cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A008275 Triangle read by rows of Stirling numbers of first kind, s(n,k), n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, -1, 1, 2, -3, 1, -6, 11, -6, 1, 24, -50, 35, -10, 1, -120, 274, -225, 85, -15, 1, 720, -1764, 1624, -735, 175, -21, 1, -5040, 13068, -13132, 6769, -1960, 322, -28, 1, 40320, -109584, 118124, -67284, 22449, -4536, 546, -36, 1, -362880, 1026576, -1172700, 723680, -269325, 63273, -9450, 870, -45, 1
Offset: 1

Views

Author

Keywords

Comments

The unsigned numbers are also called Stirling cycle numbers: |s(n,k)| = number of permutations of n objects with exactly k cycles.
The unsigned numbers (read from right to left) also give the number of permutations of 1..n with complexity k, where the complexity of a permutation is defined to be the sum of the lengths of the cycles minus the number of cycles. In other words, the complexity equals the sum of (length of cycle)-1 over all cycles. For n=5, the numbers of permutations with complexity 0,1,2,3,4 are 1, 10, 35, 50, 24. - N. J. A. Sloane, Feb 08 2019
The unsigned numbers are also the number of permutations of 1..n with k left to right maxima (see Khovanova and Lewis, Smith).
With P(n) = the number of integer partitions of n, T(i,n) = the number of parts of the i-th partition of n, D(i,n) = the number of different parts of the i-th partition of n, p(j,i,n) = the j-th part of the i-th partition of n, m(j,i,n) = multiplicity of the j-th part of the i-th partition of n, Sum_[T(i,n)=k]{i=1}^{P(n)} = sum running from i=1 to i=p(n) but taking only partitions with T(i,n)=k parts into account, Product{j=1..T(i,n)} = product running from j=1 to j=T(i,n), Product_{j=1..D(i,n)} = product running from j=1 to j=D(i,n) one has S1(n,k) = Sum_[T(i,n)=k]{i=1}^{P(n)} (n!/Product{j=1..T(i,n)} p(j,i,n))* (1/Product_{j=1..D(i,n)} m(j,i,n)!). For example, S1(6,3) = 225 because n=6 has the following partitions with k=3 parts: (114), (123), (222). Their complexions are: (114): (6!/1*1*4)*(1/2!*1!) = 90, (123): (6!/1*2*3)*(1/1!*1!*1!) = 120, (222): (6!/2*2*2)*(1/3!) = 15. The sum of the complexions is 90+120+15 = 225 = S1(6,3). - Thomas Wieder, Aug 04 2005
Row sums equal 0. - Jon Perry, Nov 14 2005
|s(n,k)| enumerates unordered n-vertex forests composed of k increasing non-plane (unordered) trees. Proof from the e.g.f. of the first column and the F. Bergeron et al. reference, especially Table 1, last row (non-plane "recursive"), given in A049029. - Wolfdieter Lang, Oct 12 2007
|s(n,k)| enumerates unordered increasing n-vertex k-forests composed of k unary trees (out-degree r from {0,1}) whose vertices of depth (distance from the root) j >= 0 come in j+1 colors (j=0 for the k roots). - Wolfdieter Lang, Oct 12 2007, Feb 22 2008
A refinement of the unsigned array is A036039. For an association to forests of "naturally grown" rooted non-planar trees, dispositions of flags on flagpoles, and colorings of the vertices of the complete graphs K_n, see A130534. - Tom Copeland, Mar 30 and Apr 05 2014
The Stirling numbers of the first kind were related to the falling factorial and the convolved, or generalized, Bernoulli numbers B_n by Norlund in 1924 through Sum_{k=1..n+1} T(n+1,k) * x^(k-1) = (x-1)!/(x-1-n)! = (x + B.(0))^n = B_n(x), umbrally evaluated with (B.(0))^k = B_k(0) and the associated Appell polynomial B_n(x) defined by the e.g.f. (t/(exp(t) - 1))^(n+1) * exp(x*t) = exp(B.(x)t). - Tom Copeland, Sep 29 2015
With x = e^z, D_x = d/dx, D_z = d/dz, and p_n(x) the row polynomials of this entry, x^n (D_x)^n = p_n(D_z) = (D_z)! / (D_z - n)! = (xD_x)! / (xD_x - n)!. - Tom Copeland, Nov 27 2015
From the operator relation z + Psi(1) + sum_{n > 0} (-1)^n (-1/n) binomial(D,n) = z + Psi(1+D) with D = d/dz and Psi the digamma function, Zeta(n+1) = Sum_{k > n-1} (1/k) |S(k,n)| / k! for n > 0 and Zeta the Riemann zeta function. - Tom Copeland, Aug 12 2016
Let X_1,...,X_n be i.i.d. random variables with exponential distribution having mean = 1. Let Y = max{X_1,...,X_n}. Then (-1)^n*n!/( Sum_{k=1..n+1} a(n+1,k) t^(k-1) ) is the moment generating function of Y. The expectation of Y is the n-th harmonic number. - Geoffrey Critzer, Dec 25 2018
In the Ewens sampling theory describing the multivariate probability distribution of the sizes of the allelic classes in a sample of size n under the Infinite Alleles Model, |s(n,k)| gives the coefficient in the formula for the probability that a sample of n alleles has exactly k distinct types. - Noah A Rosenberg, Feb 10 2019
Named by Nielson (1906) after the Scottish mathematician James Stirling (1692-1770). - Amiram Eldar, Jun 11 2021 and Oct 02 2023
The first few row polynomials along with a recursion formula are found in a manuscript by Newton written in 1664 or 1665 (p. 169 of Turnbull) giving a geometric presentation of the binomial theorem for rational powers. - Tom Copeland, Dec 10 2022

Examples

			|s(3,2)| = 3 for the three unordered 2-forest with 3 vertices and two increasing (nonplane) trees: ((1),(2,3)), ((2),(1,3)), ((3),(1,2)).
Triangle begins:
                                      1
                                 -1,      1
                               2,    -3,      1
                          -6,    11,     -6,     1
                      24,    -50,    35,    -10,    1
                -120,    274,  -225,     85,   -15,    1
             720,  -1764,   1624,  -735,    175,  -21,   1
       -5040,  13068, -13132,  6769,  -1960,   322,  -28,  1
  40320, -109584, 118124, -67284, 22449,  -4536,  546, -36,  1
Another version of the same triangle, from _Joerg Arndt_, Oct 05 2009: (Start)
s(n,k) := number of permutations of n elements with exactly k cycles ("Stirling cycle numbers")
  n|  total   m=1      2      3     4     5    6   7  8 9
  -+-----------------------------------------------------
  1|      1     1
  2|      2     1      1
  3|      6     2      3      1
  4|     24     6     11      6     1
  5|    120    24     50     35    10     1
  6|    720   120    274    225    85    15    1
  7|   5040   720   1764   1624   735   175   21   1
  8|  40320  5040  13068  13132  6769  1960  322  28  1
  9| 362880 40320 109584 118124 67284 22449 4536 546 36 1
(End)
|s(4,2)| = 11 for the eleven unordered 2-forest with 4 vertices, composed of two increasing (nonplane) trees: ((1),((23)(24))), ((2),((13)(14))), ((3),((12)(14))), ((4),((12)(13))); ((1),(2,3,4)),((2),(1,2,3)), ((3), (1,2,4)), ((4),(1,2,3)); ((1,2),(3,4)), ((1,3),(2,4)), ((1,4),(2,3)). - _Wolfdieter Lang_, Feb 22 2008
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
  • Arthur T. Benjamin and Jennifer Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 93ff.
  • Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
  • George Boole, Finite Differences, 5th ed. New York, NY: Chelsea, 1970.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974; Chapter V, also p. 310.
  • John H. Conway and Richard K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 93.
  • Florence Nightingale David, Maurice George Kendall and David Elliot Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
  • Saber N. Elaydi, An Introduction to Difference Equations, 3rd ed. Springer, 2005.
  • Herman H. Goldstine, A History of Numerical Analysis, Springer-Verlag, 1977; Section 2.7.
  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 245. In the second edition, see Chapter 6, especially p. 259.
  • M. Miyata and J. W. Son, On the complexity of permutations and the metric space of bijections, Tensor, 60 (1998), No. 1, 109-116 (MR1768839).
  • Isaac Newton, A Method whereby to find ye areas of Those Lines wch can be squared, pp. 168-171 of Turnbull below.
  • John Riordan, An Introduction to Combinatorial Analysis, p. 48.
  • Robert Sedgewick and Phillipe Flajolet, An Introduction to the Analysis of Algorithms, Addison-Wesley, Reading, MA, 1996.
  • H. Turnbull (editor), The Correspondence of Isaac Newton Vol. II 1676-1687, Cambridge Univ. Press, 1960.

Crossrefs

Diagonals: A000217, A000914, A001303, A000915, A053567, etc.
Cf. A048994, A008277 (Stirling numbers of second kind), A039814, A039815, A039816, A039817, A048993, A087748.
Cf. A084938, A094216, A008276 (row reversed), A008277, A008278, A094262, A121632, A130534 (unsigned version), A087755 (triangle mod 2), A000142 (row sums of absolute values).

Programs

  • Haskell
    a008275 n k = a008275_tabl !! (n-1) !! (k-1)
    a008275_row n = a008275_tabl !! (n-1)
    a008275_tabl = map tail $ tail a048994_tabl
    -- Reinhard Zumkeller, Mar 18 2013
  • Maple
    with (combinat):seq(seq(stirling1(n, k), k=1..n), n=1..10); # Zerinvary Lajos, Jun 03 2007
    for i from 0 to 9 do seq(stirling1(i, j), j = 1 .. i) od; # Zerinvary Lajos, Nov 29 2007
  • Mathematica
    Flatten[Table[StirlingS1[n, k], {n, 1, 10}, {k, 1, n}]] (* Jean-François Alcover, May 18 2011 *)
    Flatten@Table[Coefficient[Product[x-k, {k, 0, n-1}], x, Range[n]], {n, Range[10]}] (* Oliver Seipel, Jun 11 2024 *)
    a[n_, n_] := 1; a[n_, 0] := 0; a[0, k_] := 0;
    a[n_, k_] := a[n, k] = a[n-1, k-1] + (n-1) a[n-1, k];
    Flatten@Table[(-1)^(n-k) a[n, k], {n, 1, 10}, {k, 1, n}] (* Oliver Seipel, Jun 11 2024 *)
  • Maxima
    create_list(stirling1(n+1,k+1),n,0,30,k,0,n); /* Emanuele Munarini, Jun 01 2012 */
    
  • PARI
    T(n,k)=if(n<1,0,n!*polcoeff(binomial(x,n),k))
    
  • PARI
    T(n,k)=if(n<1,0,n!*polcoeff(polcoeff((1+x+x*O(x^n))^y,n),k))
    
  • PARI
    vecstirling(n)=Vec(factorback(vector(n-1,i,1-i*'x))) /* (A function that returns all the s(n,k) as a vector) */ \\ Bill Allombert (Bill.Allombert(AT)math.u-bordeaux1.fr), Mar 16 2009
    

Formula

s(n, k) = s(n-1, k-1) - (n-1)*s(n-1, k), n, k >= 1; s(n, 0) = s(0, k) = 0; s(0, 0) = 1.
The unsigned numbers a(n, k)=|s(n, k)| satisfy a(n, k) = a(n-1, k-1) + (n-1)*a(n-1, k), n, k >= 1; a(n, 0) = a(0, k) = 0; a(0, 0) = 1.
E.g.f.: for m-th column (unsigned): ((-log(1-x))^m)/m!.
s(n, k) = T(n-1, k-1), n>1 and k>1, where T(n, k) is the triangle [ -1, -1, -2, -2, -3, -3, -4, -4, -5, -5, -6, -6, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, ...] and DELTA is Deléham's operator defined in A084938. The unsigned numbers are also |s(n, k)| = T(n-1, k-1), for n>0 and k>0, where T(n, k) = [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...].
Sum_{i=0..n} (-1)^(n-i) * StirlingS1(n, i) * binomial(i, k) = (-1)^(n-k) * StirlingS1(n+1, k+1). - Carlo Wood (carlo(AT)alinoe.com), Feb 13 2007
G.f. for row n: Product_{j=1..n} (x-j) (e.g., (x-1)*(x-2)*(x-3) = x^3 - 6*x^2 + 11*x - 6). - Jon Perry, Nov 14 2005
s(n,k) = A048994(n,k), for k=1..n. - Reinhard Zumkeller, Mar 18 2013 (Corrected by N. J. A. Sloane, May 07 2025 at the suggestion of Manfred Boergens, May 07 2025)
As lower triangular matrices A008277*A008275 = I, the identity matrix. - Tom Copeland, Apr 25 2014
a(n,k) = s(n,k) = lim_{y -> 0} Sum_{j=0..k} (-1)^j*binomial(k,j)*((-j*y)!/(-j*y-n)!)*y^(-k)/k! = Sum_{j=0..k} (-1)^(n-j)*binomial(k,j)*((j*y - 1 + n)!/(j*y-1)!)*y^(-k)/k!. - Tom Copeland, Aug 28 2015
From Daniel Forgues Jan 16 2016: (Start)
Let x_(0) := 1 (empty product), and for n >= 1:
x_(n) := Product_{k=0..n-1} (x-k), called a factorial term (Boole, 1970) or a factorial polynomial (Elaydi, 2005: p. 60), and also x_(-n) := 1 / [Product_{k=0..n-1} (x+k)].
Then, for n >= 1: x_(n) = Sum_{k=1..n} T(n,k) * x^k, 1 / [x_(-n)] = Sum_{k=1..n} |T(n,k)| * x^k, x^n = Sum_{k=1..n} A008277(n,k) * x_(k), where A008277(n,k) are Stirling numbers of the second kind.
The row sums (of either signed or absolute values) are Sum_{k=1..n} T(n,k) = 0^(n-1), Sum_{k=1..n} |T(n,k)| = T(n+1,1) = n!. (End)
s(n,m) = ((-1)^(n-m)/n)*Sum_{i=0..m-1} C(2*n-m-i, m-i-1)*A008517(n-m+1,n-m-i+1). - Vladimir Kruchinin, Feb 14 2018
Orthogonal relation: Sum_{i=0..n} i^p*Sum_{j=k..n} (-1)^(i+j) * binomial(j,i) * Stirling1(j,k)/j! = delta(p,k), i,k,p <= n, n >= 1. - Leonid Bedratyuk, Jul 27 2020
From Zizheng Fang, Dec 28 2020: (Start)
Sum_{k=1..n} (-1)^k * k * T(n, k) = -T(n+1, 2).
Sum_{k=1..n} k * T(n, k) = (-1)^n * (n-2)! = T(n-1, 1) for n>=2. (End)
n-th row polynomial = n!*Sum_{k = 0..2*n} (-1)^(n+k)*binomial(x, k)*binomial(x-1, 2*n-k) = n!*Sum_{k = 0..2*n+1} (-1)^(n+k+1)*binomial(x, k)*binomial(x-1, 2*n+1-k). - Peter Bala, Mar 29 2024

A048994 Triangle of Stirling numbers of first kind, s(n,k), n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 2, -3, 1, 0, -6, 11, -6, 1, 0, 24, -50, 35, -10, 1, 0, -120, 274, -225, 85, -15, 1, 0, 720, -1764, 1624, -735, 175, -21, 1, 0, -5040, 13068, -13132, 6769, -1960, 322, -28, 1, 0, 40320, -109584, 118124, -67284, 22449, -4536, 546, -36, 1, 0, -362880, 1026576, -1172700, 723680, -269325, 63273, -9450, 870, -45, 1
Offset: 0

Views

Author

Keywords

Comments

The unsigned numbers are also called Stirling cycle numbers: |s(n,k)| = number of permutations of n objects with exactly k cycles.
Mirror image of the triangle A054654. - Philippe Deléham, Dec 30 2006
Also the triangle gives coefficients T(n,k) of x^k in the expansion of C(x,n) = (a(k)*x^k)/n!. - Mokhtar Mohamed, Dec 04 2012
From Wolfdieter Lang, Nov 14 2018: (Start)
This is the Sheffer triangle of Jabotinsky type (1, log(1 + x)). See the e.g.f. of the triangle below.
This is the inverse Sheffer triangle of the Stirling2 Sheffer triangle A008275.
The a-sequence of this Sheffer triangle (see a W. Lang link in A006232)
is from the e.g.f. A(x) = x/(exp(x) -1) a(n) = Bernoulli(n) = A027641(n)/A027642(n), for n >= 0. The z-sequence vanishes.
The Boas-Buck sequence for the recurrences of columns has o.g.f. B(x) = Sum_{n>=0} b(n)*x^n = 1/((1 + x)*log(1 + x)) - 1/x. b(n) = (-1)^(n+1)*A002208(n+1)/A002209(n+1), b = {-1/2, 5/12, -3/8, 251/720, -95/288, 19087/60480,...}. For the Boas-Buck recurrence of Riordan and Sheffer triangles see the Aug 10 2017 remark in A046521, adapted to the Sheffer case, also for two references. See the recurrence and example below. (End)
Let G(n,m,k) be the number of simple labeled graphs on [n] with m edges and k components. Then T(n,k) = Sum (-1)^m*G(n,m,k). See the Read link below. Equivalently, T(n,k) = Sum mu(0,p) where the sum is over all set partitions p of [n] containing k blocks and mu is the Moebius function in the incidence algebra associated to the set partition lattice on [n]. - Geoffrey Critzer, May 11 2024

Examples

			Triangle begins:
  n\k 0     1       2       3      4      5      6    7    8   9 ...
  0   1
  1   0     1
  2   0    -1       1
  3   0     2      -3       1
  4   0    -6      11      -6      1
  5   0    24     -50      35    -10      1
  6   0  -120     274    -225     85    -15      1
  7   0   720   -1764    1624   -735    175    -21    1
  8   0 -5040   13068  -13132   6769  -1960    322  -28    1
  9   0 40320 -109584  118124 -67284  22449  -4536  546  -36   1
  ... - _Wolfdieter Lang_, Aug 22 2012
------------------------------------------------------------------
From _Wolfdieter Lang_, Nov 14 2018: (Start)
Recurrence: s(5,2)= s(4, 1) - 4*s(4, 2) = -6 - 4*11 = -50.
Recurrence from the a- and z-sequences: s(6, 3) = 2*(1*1*(-50) + 3*(-1/2)*35 + 6*(1/6)*(-10) + 10*0*1) = -225.
Boas-Buck recurrence for column k = 3, with b = {-1/2, 5/12, -3/8, ...}:
s(6, 3) = 6!*((-3/8)*1/3! + (5/12)*(-6)/4! + (-1/2)*35/5!) = -225. (End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974; Chapter V, also p. 310.
  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 93.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 245.
  • J. Riordan, An Introduction to Combinatorial Analysis, p. 48.

Crossrefs

See especially A008275 which is the main entry for this triangle. A132393 is an unsigned version, and A008276 is another version.
A000142(n) = Sum_{k=0..n} |s(n, k)| for n >= 0.
Row sums give A019590(n+1).

Programs

  • Haskell
    a048994 n k = a048994_tabl !! n !! k
    a048994_row n = a048994_tabl !! n
    a048994_tabl = map fst $ iterate (\(row, i) ->
    (zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 0)
    -- Reinhard Zumkeller, Mar 18 2013
  • Maple
    A048994:= proc(n,k) combinat[stirling1](n,k) end: # R. J. Mathar, Feb 23 2009
    seq(print(seq(coeff(expand(k!*binomial(x,k)),x,i),i=0..k)),k=0..9); # Peter Luschny, Jul 13 2009
    A048994_row := proc(n) local k; seq(coeff(expand(pochhammer(x-n+1,n)), x,k), k=0..n) end: # Peter Luschny, Dec 30 2010
  • Mathematica
    Table[StirlingS1[n, m], {n, 0, 9}, {m, 0, n}] (* Peter Luschny, Dec 30 2010 *)
  • Maxima
    create_list(stirling1(n,k),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • PARI
    a(n,k) = if(k<0 || k>n,0, if(n==0,1,(n-1)*a(n-1,k)+a(n-1,k-1)))
    
  • PARI
    trg(nn)=for (n=0, nn-1, for (k=0, n, print1(stirling(n,k,1), ", ");); print();); \\ Michel Marcus, Jan 19 2015
    

Formula

s(n, k) = A008275(n,k) for n >= 1, k = 1..n; column k = 0 is {1, repeat(0)}.
s(n, k) = s(n-1, k-1) - (n-1)*s(n-1, k), n, k >= 1; s(n, 0) = s(0, k) = 0; s(0, 0) = 1.
The unsigned numbers a(n, k)=|s(n, k)| satisfy a(n, k)=a(n-1, k-1)+(n-1)*a(n-1, k), n, k >= 1; a(n, 0) = a(0, k) = 0; a(0, 0) = 1.
Triangle (signed) = [0, -1, -1, -2, -2, -3, -3, -4, -4, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; Triangle(unsigned) = [0, 1, 1, 2, 2, 3, 3, 4, 4, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; where DELTA is Deléham's operator defined in A084938.
Sum_{k=0..n} (-m)^(n-k)*s(n, k) = A000142(n), A001147(n), A007559(n), A007696(n), ... for m = 1, 2, 3, 4, ... .- Philippe Deléham, Oct 29 2005
A008275*A007318 as infinite lower triangular matrices. - Gerald McGarvey, Aug 20 2009
T(n,k) = n!*[x^k]([t^n]exp(x*log(1+t))). - Peter Luschny, Dec 30 2010, updated Jun 07 2020
From Wolfdieter Lang, Nov 14 2018: (Start)
Recurrence from the Sheffer a-sequence (see a comment above): s(n, k) = (n/k)*Sum_{j=0..n-k} binomial(k-1+j, j)*Bernoulli(j)*s(n-1, k-1+j), for n >= 1 and k >= 1, with s(n, 0) = 0 if n >= 1, and s(0,0) = 1.
Boas-Buck type recurrence for column k: s(n, k) = (n!*k/(n - k))*Sum_{j=k..n-1} b(n-1-j)*s(j, k)/j!, for n >= 1 and k = 0..n-1, with input s(n, n) = 1. For sequence b see the Boas-Buck comment above. (End)
T(n,k) = Sum_{j=k..n} (-1)^(n-j)*A271705(n,j)*A216294(j,k). - Mélika Tebni, Feb 23 2023

Extensions

Offset corrected by R. J. Mathar, Feb 23 2009
Formula corrected by Philippe Deléham, Sep 10 2009

A007840 Number of factorizations of permutations of n letters into ordered cycles.

Original entry on oeis.org

1, 1, 3, 14, 88, 694, 6578, 72792, 920904, 13109088, 207360912, 3608233056, 68495486640, 1408631978064, 31197601660080, 740303842925184, 18738231641600256, 503937595069600896, 14349899305396086912, 431322634732516137216, 13646841876634025159424
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of ways to seat n people at an unspecified number of circular tables and then linearly order the nonempty tables. - Geoffrey Critzer, Mar 18 2009
The terms of this sequence for n >= 1 are the row sums of A008275^2, the unsigned version of A039814. - Peter Bala, Jul 22 2014
Signed sequence is the base for an Appell sequence of polynomials with the e.g.f. e^(x*t)/[log(1+t) + 1] = exp(P(.,x),t) that is the umbral compositional inverse for A238385, reverse of A111492, i.e., umbrally evaluated UP(n,P(.,t))= x^n = P(n,UP(.,t)) where UP(n,t) are the polynomials of A238385. Umbrally evaluated means letting (A(.,t))^n = A(n,t) after substituting A for the independent variable of the polynomial. - Tom Copeland, Nov 15 2014
a(n) is the number of unimodal rooted forests on n labeled nodes (i.e., those forests that avoid the patterns 213 and 312). - Kassie Archer, Aug 30 2018
Number of permutations of [n] where fixed points at index j are j-colored and all other points are unicolored. - Alois P. Heinz, Apr 24 2020

Crossrefs

Cf. A052860. Row sums of unsigned version of A039814.

Programs

  • Maple
    a:= proc(n) a(n):= n!*`if`(n=0, 1, add(a(k)/(k!*(n-k)), k=0..n-1)) end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Nov 06 2012
  • Mathematica
    Table[Sum[Abs[StirlingS1[n, k]] k!, {k, 0, n}], {n, 0, 20}] (* Geoffrey Critzer, Mar 18 2009 *)
  • PARI
    a(n)=n!*polcoeff(1/(1+log(1-x +x*O(x^n))),n) /* Paul D. Hanna, Jul 19 2006 */
    
  • PARI
    {a(n)=local(CF=1+x*O(x)); for(k=0, n-1, CF=1/((n-k)-((n-k+1)\2)^2*x*CF)); n!*polcoeff(1/(1-x*CF), n)} /* Paul D. Hanna, Jul 19 2006 */
    
  • Sage
    def A007840_list(len):
        f, R, C = 1, [1], [1]+[0]*len
        for n in (1..len):
            f *= n
            for k in range(n, 0, -1):
                C[k] = -C[k-1]*((k-1)/k if k>1 else 1)
            C[0] = sum((-1)^k*C[k] for k in (1..n))
            R.append(C[0]*f)
        return R
    print(A007840_list(20)) # Peter Luschny, Feb 21 2016

Formula

a(n) = Sum_{k=1..n} k! * s(n, k), s(n, k) = unsigned Stirling number of first kind; E.g.f. 1/(1+log(1-z)).
For n>0, a(n) is the permanent of the n X n matrix with entries a(i, i) = i and a(i, j) = 1 elsewhere. - Philippe Deléham, Dec 09 2003
a(n) = A052860(n)/n for n >= 1.
a(n) = n!*Sum_{k=0..n-1} a(k)/k!/(n-k) for n >= 1 with a(0)=1. - Paul D. Hanna, Jul 19 2006
E.g.f.: B(A(x)) where B(x) = 1/(1-x) and A(x) = log(1/(1-x)). - Geoffrey Critzer, Mar 18 2009
a(n) = D^n(1/(1-x)) evaluated at x = 0, where D is the operator exp(x)*d/dx. Cf. A006252. - Peter Bala, Nov 25 2011
E.g.f.: 1/(1+log(1-x)) = 1/(1 - x/(1 - x/(2 - x/(3 - 4*x/(4 - 4*x/(5 - 9*x/(6 - 9*x/(7 - 16*x/(8 - 16*x/(9 - ...)))))))))), a continued fraction. - Paul D. Hanna, Dec 31 2011
a(n) ~ n! * exp(n)/(exp(1)-1)^(n+1). - Vaclav Kotesovec, Jun 21 2013

Extensions

Extended June 1995

A003713 Expansion of e.g.f. log(1/(1+log(1-x))).

Original entry on oeis.org

0, 1, 2, 7, 35, 228, 1834, 17582, 195866, 2487832, 35499576, 562356672, 9794156448, 186025364016, 3826961710272, 84775065603888, 2011929826983504, 50929108873336320, 1369732445916318336, 39005083331889816960, 1172419218038422659456, 37095226237402478348544
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is the permanent of the n X n matrix M with M(i,i) = i+1, other entries 1. - Philippe Deléham, Nov 03 2005
Supernecklaces of type III (cycles of cycles). - Ricardo Bittencourt, May 05 2013
Unsigned coefficients for the raising / creation operator R for the Appell sequence of polynomials A238385: R = x + 1 - 2 D + 7 D^2/2! - 35 D^3/3! + ... . - Tom Copeland, May 09 2016

References

  • J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n)=|A039814(n, 1)| (first column of triangle). Cf. A000268, A000310, A000359, A000406, A001765.
Cf. A238385.

Programs

  • Maple
    series(ln(1/(1+ln(1-x))),x,17);
    with (combstruct): M[ 1798 ] := [ A,{A=Cycle(Cycle(Z))},labeled ]:
  • Mathematica
    With[{nn=20},CoefficientList[Series[Log[1/(1+Log[1-x])],{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Dec 15 2012 *)
    Table[Sum[(-1)^(n-k) * (k-1)! * StirlingS1[n, k], {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 19 2024 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(-log(1+log(1-x+x*O(x^n))),n))

Formula

Sum_{k=1..n} (k-1)!*|Stirling1(n, k)|. - Vladeta Jovovic, Sep 14 2003
a(n+1) = n! * Sum_{k=0..n} A007840(k)/k!. E.g., a(4) = 228 = 24*(1/1 + 1/1 + 3/2 + 14/6 + 88/24) = 24 + 24 + 36 + 56 + 88. - Philippe Deléham, Dec 10 2003
a(n) ~ (n-1)! * (exp(1)/(exp(1)-1))^n. - Vaclav Kotesovec, Jun 21 2013
a(0) = 0; a(n) = (n-1)! + Sum_{k=1..n-1} binomial(n-1,k) * (k-1)! * a(n-k). - Ilya Gutkovskiy, Jul 18 2020

Extensions

Thanks to Paul Zimmermann for comments.

A039810 Matrix square of Stirling2 triangle A008277: 2-levels set partitions of [n] into k first-level subsets.

Original entry on oeis.org

1, 2, 1, 5, 6, 1, 15, 32, 12, 1, 52, 175, 110, 20, 1, 203, 1012, 945, 280, 30, 1, 877, 6230, 8092, 3465, 595, 42, 1, 4140, 40819, 70756, 40992, 10010, 1120, 56, 1, 21147, 283944, 638423, 479976, 156072, 24570, 1932, 72, 1, 115975, 2090424, 5971350, 5660615, 2350950, 487704, 53550, 3120, 90, 1
Offset: 1

Views

Author

Christian G. Bower, Feb 15 1999

Keywords

Comments

This triangle groups certain generalized Stirling numbers of the second kind A000558, A000559, ... They can also be interpreted in terms of trees of height 3 with n leaves and constraints on the order of the root.
From Peter Bala, Jul 19 2014: (Start)
The (n,k)-th entry in this table gives the number of double partitions of the set [n] = {1,2,...,n} into k blocks. To form a double partition of [n] we first write [n] as a disjoint union X_1 U...U X_k of k nonempty subsets (blocks) X_i of [n]. Then each block X_i is further partitioned into sub-blocks to give a double partition. For instance, {1,2,4} U {3,5} is a partition of [5] into 2 blocks and {{1,4},{2}} U {{3},{5}} is a refinement of this partition to a double partition of [5] into 2 blocks (and 4 sub-blocks).
Compare the above interpretation for the (n,k)-th entry of this table with the interpretation of the (n,k)-th entry of A013609 (the square of Pascal's triangle but with the rows read in reverse order) as counting the pairs (X,Y) of subsets of [n] such that |Y| = k and X is contained in Y. (End)
Also the Bell transform of the shifted Bell numbers B(n+1) without column 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016
T(n,k) is the number of partitions of an n-set into colored blocks, such that exactly k colors are used and the colors are introduced in increasing order. T(3,2) = 6: 1a|23b, 13a|2b, 12a|3b, 1a|2a|3b, 1a|2b|3a, 1a|2b|3b. - Alois P. Heinz, Aug 27 2019

Examples

			Triangle begins:
      k = 1    2    3    4    5          sum
  n
  1       1                                1
  2       2    1                           3
  3       5    6    1                     12
  4      15   32   12    1                60
  5      52  175  110   20    1          358
Matrix multiplication Stirling2 * Stirling2:
                  1  0  0  0
                  1  1  0  0
                  1  3  1  0
                  1  7  6  1
.
  1  0  0  0      1  0  0  0
  1  1  0  0      2  1  0  0
  1  3  1  0      5  6  1  0
  1  7  6  1     15 32 12  1
From _Peter Bala_, Jul 19 2014: (Start)
T(5,2) = 175: A 5-set can be partitioned into 2 blocks as either a union of a 3-set and a 2-set or as a union of a 4-set and a singleton set.
In the first case there are 10 ways of partitioning a 5-set into a 3-set and a 2-set. Each 3-set can be further partitioned into sub-blocks in Bell(3) = 5 ways and each 2-set can be further partitioned into sub-blocks in Bell(2) = 2 ways. So altogether we obtain 10*5*2 = 100 double partitions of this type.
In the second case, there are 5 ways of partitioning a 5-set into a 4-set and a 1-set. Each 4-set can be further partitioned in Bell(4) = 15 ways and each 1-set can be further partitioned in Bell(1) = 1 way. So altogether we obtain 5*15*1 = 75 double partitions of this type.
Hence, in total, T(5,2) = 100 + 75 = 175. (End)
		

Crossrefs

Cf. A039811, A039814, A039813 (other products of Stirling matrices).
T(n, 1) = A000110(n) (first column) (Bell numbers).
T(n, 2) = A000558(n) 2-levels set partitions with 2 first-level classes.
T(n, n-1) = A002378(n-1) = n*(n-1) = 2*C(n,2) = set-partitions into (n-2) singletons and one of the two possible set partitions of [2].
Sum is A000258(n), 2-levels set partitions.
Another version with offset 0: A130191.
Horizontal mirror triangle is A046817.
T(2n,n) gives A321712.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> combinat:-bell(n+1), 10); # Peter Luschny, Jan 28 2016
  • Mathematica
    Flatten[Table[Sum[StirlingS2[n,i]*StirlingS2[i,k],{i,k,n}],{n,1,10},{k,1,n}]] (* Indranil Ghosh, Feb 22 2017 *)
    rows = 10;
    t = Table[BellB[n+1], {n, 0, rows}];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
  • PARI
    T(n, k) = sum(j=0, n, stirling(n, j, 2)*stirling(j, k, 2)); \\ Seiichi Manyama, Feb 13 2022

Formula

S2 = A008277 (Stirling numbers of the second kind).
T = (S2)^2.
T(n,k) = Sum_{i=k..n} S2(n,i) * S2(i,k).
E.g.f. of k-th column: (exp(exp(x)-1)-1)^k/k!. [corrected by Seiichi Manyama, Feb 12 2022]
From Peter Bala, Jul 19 2014: (Start)
T(n,k) = Sum_{disjoint unions X_1 U...U X_k = [n]} Bell(|X_1|)*...*Bell(|X_k|), where Bell(n) = A000110(n).
Recurrence equation: T(n+1,k+1) = Sum_{j = k..n} Bell(n+1-j)*binomial(n,j)* T(j,k).
Row sums [1,3,12,60,358,...] = A000258. (End)

Extensions

Definition and interpretation edited by Olivier Gérard, Jul 31 2011

A054654 Triangle of Stirling numbers of 1st kind, S(n, n-k), n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -3, 2, 0, 1, -6, 11, -6, 0, 1, -10, 35, -50, 24, 0, 1, -15, 85, -225, 274, -120, 0, 1, -21, 175, -735, 1624, -1764, 720, 0, 1, -28, 322, -1960, 6769, -13132, 13068, -5040, 0
Offset: 0

Views

Author

N. J. A. Sloane, Apr 18 2000

Keywords

Comments

Triangle is the matrix product of the binomial coefficients with the Stirling numbers of the first kind.
Triangle T(n,k) giving coefficients in expansion of n!*C(x,n) in powers of x. E.g., 3!*C(x,3) = x^3-3*x^2+2*x.
The matrix product of binomial coefficients with the Stirling numbers of the first kind results in the Stirling numbers of the first kind again, but the triangle is shifted by (1,1).
Essentially [1,0,1,0,1,0,1,0,...] DELTA [0,-1,-1,-2,-2,-3,-3,-4,-4,...] where DELTA is the operator defined in A084938; mirror image of the Stirling-1 triangle A048994. - Philippe Deléham, Dec 30 2006
From Doudou Kisabaka, Dec 18 2009: (Start)
The sum of the entries on each row of the triangle, starting on the 3rd row, equals 0. E.g., 1+(-3)+2+0 = 0.
The entries on the triangle can be computed as follows. T(n,r) = T(n-1,r) - (n-1)*T(n-1,r-1). T(n,r) = 0 when r equals 0 or r > n. T(n,r) = 1 if n==1. (End)

Examples

			Matrix begins:
  1, 0,  0,  0,  0,   0,    0,     0,      0, ...
  0, 1, -1,  2, -6,  24, -120,   720,  -5040, ...
  0, 0,  1, -3, 11, -50,  274, -1764,  13068, ...
  0, 0,  0,  1, -6,  35, -225,  1624, -13132, ...
  0, 0,  0,  0,  1, -10,   85,  -735,   6769, ...
  0, 0,  0,  0,  0,   1,  -15,   175,  -1960, ...
  0, 0,  0,  0,  0,   0,    1,   -21,    322, ...
  0, 0,  0,  0,  0,   0,    0,     1,    -28, ...
  0, 0,  0,  0,  0,   0,    0,     0,      1, ...
  ...
Triangle begins:
  1;
  1,   0;
  1,  -1,   0;
  1,  -3,   2,    0;
  1,  -6,  11,   -6,    0;
  1, -10,  35,  -50,   24,     0;
  1, -15,  85, -225,  274,  -120,   0;
  1, -21, 175, -735, 1624, -1764, 720, 0;
  ...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 18, table 18:6:1 at page 152.

Crossrefs

Essentially Stirling numbers of first kind, multiplied by factorials - see A008276.
The Stirling2 counterpart is A106800.

Programs

  • Haskell
    a054654 n k = a054654_tabl !! n !! k
    a054654_row n = a054654_tabl !! n
    a054654_tabl = map reverse a048994_tabl
    -- Reinhard Zumkeller, Mar 18 2014
  • Maple
    a054654_row := proc(n) local k; seq(coeff(expand((-1)^n*pochhammer (-x,n)),x,n-k),k=0..n) end: # Peter Luschny, Nov 28 2010
    seq(seq(Stirling1(n, n-k), k=0..n), n=0..8); # Peter Luschny, Feb 21 2021
  • Mathematica
    row[n_] := Reverse[ CoefficientList[ (-1)^n*Pochhammer[-x, n], x] ]; Flatten[ Table[ row[n], {n, 0, 8}]] (* Jean-François Alcover, Feb 16 2012, after Maple *)
    Table[StirlingS1[n,n-k],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Jun 17 2023 *)
  • PARI
    T(n,k)=polcoeff(n!*binomial(x,n), n-k)
    

Formula

n!*binomial(x, n) = Sum_{k=0..n} T(n, k)*x^(n-k).
(In Maple notation:) Matrix product A*B of matrix A[i,j]:=binomial(j-1,i-1) with i = 1 to p+1, j = 1 to p+1, p=8 and of matrix B[i,j]:=stirling1(j,i) with i from 1 to d, j from 1 to d, d=9.
T(n, k) = (-1)^k*Sum_{j=0..k} E2(k, j)*binomial(n+j-1, 2*k), where E2(k, j) are the second-order Eulerian numbers A340556. - Peter Luschny, Feb 21 2021

Extensions

Additional comments from Thomas Wieder, Dec 29 2006
Edited by N. J. A. Sloane at the suggestion of Eric W. Weisstein, Jan 20 2008

A341587 E.g.f.: log(1 + log(1 - x))^2 / 2.

Original entry on oeis.org

1, 6, 40, 315, 2908, 30989, 375611, 5112570, 77305024, 1286640410, 23387713930, 461187042992, 9808283703684, 223833267479764, 5456669750439788, 141540592345674800, 3892707724320135616, 113153294901088030320, 3466501398608272647984, 111636571036702743967104, 3770483138507706753943584
Offset: 2

Views

Author

Ilya Gutkovskiy, Feb 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Log[1 + Log[1 - x]]^2/2, {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 2] &
    Table[Sum[Abs[StirlingS1[n, k] StirlingS1[k, 2]], {k, 2, n}], {n, 2, 22}]

Formula

a(n) = Sum_{k=2..n} |Stirling1(n, k) * Stirling1(k, 2)|.
a(n) = Sum_{k=2..n} |Stirling1(n, k)| * (k-1)! * H(k-1), where H(k) is the k-th harmonic number.
a(n) = Sum_{k=1..n-1} binomial(n-1, k) * A003713(k) * A003713(n-k).
a(n) = A052822(n) / 2.
a(n) ~ sqrt(2*Pi) * log(n) * n^(n - 1/2) / (exp(1) - 1)^n * (1 + (gamma - log(exp(1) - 1))/log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 15 2021

A039817 Triangle read by rows: matrix 5th power of the Stirling-1 triangle A008275.

Original entry on oeis.org

1, -5, 1, 40, -15, 1, -440, 235, -30, 1, 6170, -4200, 775, -50, 1, -105315, 86020, -20475, 1925, -75, 1, 2120610, -2001055, 577570, -70525, 4025, -105, 1, -49242470, 52305780, -17609620, 2623145, -195300, 7490, -140, 1, 1296133195, -1520815230, 581516560, -101595060, 9264045, -464940, 12810, -180, 1
Offset: 1

Views

Author

Christian G. Bower, Feb 15 1999

Keywords

Examples

			Triangle begins:
        1;
       -5,     1;
       40,   -15,      1;
     -440,   235,    -30,    1;
     6170, -4200,    775,  -50,   1;
  -105315, 86020, -20475, 1925, -75, 1;
  ...
		

Crossrefs

Cf. A000359 (first column), A008275.

Programs

  • Mathematica
    Flatten[Table[SeriesCoefficient[(Log[1+Log[1+Log[1+Log[1+Log[1+x]]]]])^k,{x,0,n}] n!/k!, {n,9}, {k,n}]] (* Stefano Spezia, Sep 12 2022 *)

Formula

E.g.f. of k-th column: ((log(1+log(1+log(1+log(1+log(1+x))))))^k)/k!.

A039815 Triangle read by rows: matrix cube of the Stirling-1 triangle A008275.

Original entry on oeis.org

1, -3, 1, 15, -9, 1, -105, 87, -18, 1, 947, -975, 285, -30, 1, -10472, 12657, -4680, 705, -45, 1, 137337, -188090, 82887, -15960, 1470, -63, 1, -2085605, 3159699, -1598954, 370237, -43890, 2730, -84, 1, 36017472, -59326371, 33613353, -9009294, 1292067, -103950, 4662, -108, 1
Offset: 1

Views

Author

Christian G. Bower, Feb 15 1999

Keywords

Examples

			Triangle begins:
       1;
      -3,     1;
      15,    -9,     1;
    -105,    87,   -18,   1;
     947,  -975,   285, -30,   1;
  -10472, 12657, -4680, 705, -45, 1;
  ...
		

Crossrefs

Cf. A000268 (first column), A008275.

Programs

  • Maple
    T:= Matrix(10,10,(i,j) -> `if`(i>= j, combinat:-stirling1(i,j),0)):
    M:= T^3:
    seq(seq(M[i,j],j=1..i),i=1..10); # Robert Israel, Sep 12 2022
  • Mathematica
    Flatten[Table[SeriesCoefficient[(Log[1+Log[1+Log[1+x]]])^k, {x,0,n}] n!/k!, {n,9}, {k,n}]] (* Stefano Spezia, Sep 12 2022 *)

Formula

E.g.f. of k-th column: ((log(1+log(1+log(1+x))))^k)/k!.

A039816 Triangle read by rows: matrix 4th power of the Stirling-1 triangle A008275.

Original entry on oeis.org

1, -4, 1, 26, -12, 1, -234, 152, -24, 1, 2696, -2210, 500, -40, 1, -37919, 36976, -10710, 1240, -60, 1, 630521, -704837, 245896, -36750, 2590, -84, 1, -12111114, 15132932, -6120324, 1109696, -101500, 4816, -112, 1, 264051201, -362099010, 165387680, -34990620, 3901296, -241164, 8232, -144, 1
Offset: 1

Views

Author

Christian G. Bower, Feb 15 1999

Keywords

Examples

			Triangle begins:
       1;
      -4,     1;
      26,   -12,      1;
    -234,   152,    -24,    1;
    2696, -2210,    500,  -40,   1;
  -37919, 36976, -10710, 1240, -60, 1;
  ...
		

Crossrefs

Cf. A000310 (first column), A008275.

Programs

  • Maple
    T:= Matrix(10,10,(i,j) -> `if`(i>= j, combinat:-stirling1(i,j),0)):
    M:= T^4:
    seq(seq(M[i,j],j=1..i),i=1..10); # Robert Israel, Sep 12 2022
  • Mathematica
    Flatten[Table[SeriesCoefficient[(Log[1+Log[1+Log[1+Log[1+x]]]])^k,{x,0,n}] n!/k!, {n,9}, {k,n}]] (* Stefano Spezia, Sep 12 2022 *)

Formula

E.g.f. of k-th column: ((log(1+log(1+log(1+log(1+x)))))^k)/k!.
Showing 1-10 of 17 results. Next