cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 37 results. Next

A000154 Erroneous version of A003713.

Original entry on oeis.org

1, 1, 2, 7, 35, 228, 1834, 17382, 195866, 2487832, 35499576, 562356672, 9794156448, 186025364016, 3826961710272, 84775065603888, 2011929826983504
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

A089064 Expansion of e.g.f. log(1-log(1-x)).

Original entry on oeis.org

0, 1, 0, 1, 1, 8, 26, 194, 1142, 9736, 81384, 823392, 8738016, 104336880, 1328270880, 18419317968, 272291315376, 4312675967232, 72478365279360, 1292173575000192, 24314102888206464, 482046102448383744, 10037081891973037824
Offset: 0

Views

Author

Vladeta Jovovic, Dec 20 2003

Keywords

Comments

Stirling transform of a(n)=[1,0,1,1,8,26,...] is A075792(n)=[1,1,2,8,44,...]. - Michael Somos, Mar 04 2004
Stirling transform of -(-1)^n*a(n)=[1,0,1,-1,8,-26,194,...] is A000142(n-1)=[1,1,2,6,24,120,...]. - Michael Somos, Mar 04 2004
Number of increasing trees on n vertices in which the second player has a winning strategy when interpreted as a game tree - Victor YZ Wang, May 03 2025
Convolution of absolute value of Mobius function and Mobius function applied to bottom and top elements of the set partition lattice - Victor YZ Wang, May 03 2025

References

  • G. H. Hardy, A Course of Pure Mathematics, 10th ed., Cambridge University Press, 1960, p. 428.

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Log[1-Log[1-x]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jul 01 2018 *)
    Table[(-1)^(n+1) * Sum[(k-1)! * StirlingS1[n, k], {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 19 2024 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(log(1-log(1-x+x*O(x^n))),n))
    
  • PARI
    {a(n) = if (n<1, 0, (n-1)!-sum(k=1, n-1, binomial(n-1, k)*(k-1)!*a(n-k)))} \\ Seiichi Manyama, Jun 01 2019

Formula

a(n) = (-1)^(n+1)*Sum_{k=1..n} (k-1)!*Stirling1(n, k).
E.g.f.: log(1-log(1-x)).
a(n) = (n-1)! - Sum_{k=1..n-1} binomial(n-1,k) * (k-1)! * a(n-k). - Seiichi Manyama, Jun 01 2019

A039814 Matrix square of Stirling-1 triangle A008275.

Original entry on oeis.org

1, -2, 1, 7, -6, 1, -35, 40, -12, 1, 228, -315, 130, -20, 1, -1834, 2908, -1485, 320, -30, 1, 17582, -30989, 18508, -5005, 665, -42, 1, -195866, 375611, -253400, 81088, -13650, 1232, -56, 1, 2487832, -5112570, 3805723, -1389612, 279048, -32130, 2100, -72, 1
Offset: 1

Views

Author

Christian G. Bower, Feb 15 1999

Keywords

Comments

Exponential Riordan array [1/((1 + x)*(1 + log(1 + x))), log(1 + log(1 + x))]. The row sums of the unsigned array give A007840 (apart from the initial term). - Peter Bala, Jul 22 2014
Also the Bell transform of (-1)^n*A003713(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016

Examples

			Triangle begins:
      1;
     -2,    1;
      7,   -6,     1;
    -35,   40,   -12,   1;
    228, -315,   130, -20,   1;
  -1834, 2908, -1485, 320, -30, 1;
...
		

Crossrefs

Column k=1..3 give (-1)^(n-1) * A003713(n), (-1)^n * A341587(n), (-1)^(n-1) * A341588(n).
Cf. A007840.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> (-1)^n*add(k!*abs(Stirling1(n+1,k+1)), k=0..n), 10); # Peter Luschny, Jan 28 2016
  • Mathematica
    max = 9; t = Table[StirlingS1[n, k], {n, 1, max}, {k, 1, max}]; t2 = t.t; Table[t2[[n, k]], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 01 2013 *)
    rows = 9;
    t = Table[(-1)^n*Sum[k!*Abs[StirlingS1[n+1, k+1]], {k,0,n}], {n, 0, rows}];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
  • PARI
    T(n, k) = sum(j=0, n, stirling(n, j, 1)*stirling(j, k, 1)); \\ Seiichi Manyama, Feb 13 2022

Formula

E.g.f. of k-th column: ((log(1+log(1+x)))^k)/k!.
E.g.f.: 1/(1 + t)*( 1 + log(1 + t) )^(x-1) = 1 + (-2 + x)*t + (7 - 6*x + x^2)*t^2/2! + .... - Peter Bala, Jul 22 2014
T(n,k) = Sum_{j=0..n} Stirling1(n,j) * Stirling1(j,k). - Seiichi Manyama, Feb 13 2022

A000359 Coefficients of iterated exponentials.

Original entry on oeis.org

1, 5, 40, 440, 6170, 105315, 2120610, 49242470, 1296133195, 38152216495, 1242274374380, 44345089721923, 1722416374173854, 72330102999829054, 3265871028909088036, 157797437377747327987, 8124524883679977475839, 444098724261935142753430
Offset: 1

Views

Author

Keywords

References

  • J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = |A039817(n, 1)| (first column of triangle). Cf. A003713, A000268, A000310, A000406, A001765.

Programs

  • Mathematica
    max = 20; CoefficientList[-Log[1 + Log[1 + Log[1 + Log[1 + Log[1 - x]]]]]/x + O[x]^max, x]*Range[max]! (* Jean-François Alcover, Feb 08 2016 *)
  • PARI
    T(n, k) = if(k==1, (n-1)!, sum(j=1, n, abs(stirling(n, j, 1))*T(j, k-1)));
    a(n) = T(n, 5); \\ Seiichi Manyama, Feb 11 2022
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(-log(1+log(1+log(1+log(1+log(1-x))))))) \\ Seiichi Manyama, Feb 11 2022

Formula

E.g.f.: -log(1+log(1+log(1+log(1+log(1-x))))).

A000268 E.g.f.: -log(1+log(1+log(1-x))).

Original entry on oeis.org

1, 3, 15, 105, 947, 10472, 137337, 2085605, 36017472, 697407850, 14969626900, 352877606716, 9064191508018, 252024567201300, 7542036496650006, 241721880399970938, 8261159383595659128, 299916384730043070880, 11526945327529620432872, 467583770376898192016104
Offset: 1

Views

Author

Keywords

References

  • J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n)=|A039815(n, 1)| (first column of triangle).

Programs

  • Mathematica
    max = 20; CoefficientList[-Log[1 + Log[1 + Log[1 - x]]]/x + O[x]^max, x] * Range[max]! (* Jean-François Alcover, Feb 06 2016 *)
  • PARI
    a(n) = sum(m=1, n, (m-1)!*(-1)^(n+m)*sum(k=m, n, stirling(n,k,1)*stirling(k,m,1))); \\ Michel Marcus, Feb 06 2016

Formula

a(n) = sum((m-1)!*(-1)^(n+m)*sum(stirling1(n, k)*stirling1(k, m), k,m,n), m,1,n), n>0. - Vladimir Kruchinin, Sep 14 2010

Extensions

Revised description from Christian G. Bower, Aug 15 1998

A000310 Coefficients of iterated exponentials.

Original entry on oeis.org

1, 4, 26, 234, 2696, 37919, 630521, 12111114, 264051201, 6445170229, 174183891471, 5164718385337, 166737090160871, 5822980248613990, 218756388226681557, 8797723991458469015, 377159237609540937788, 17170729962232112834302, 827382365085791968518198, 42070004707327023844695198
Offset: 1

Views

Author

Keywords

References

  • J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = |A039816(n, 1)| (first column of triangle). Cf. A003713, A000268, A000359, A000406, A001765.

Programs

  • Mathematica
    max = 20; CoefficientList[-Log[1 + Log[1 + Log[1 + Log[1 - x]]]]/x + O[x]^max, x]*Range[max]! (* Jean-François Alcover, Feb 07 2016 *)
  • PARI
    T(n, k) = if(k==1, (n-1)!, sum(j=1, n, abs(stirling(n, j, 1))*T(j, k-1)));
    a(n) = T(n, 4); \\ Seiichi Manyama, Feb 11 2022
    
  • PARI
    my(x='x+O('x^40)); Vec(serlaplace(-log(1+log(1+log(1+log(1-x)))))); \\ Michel Marcus, Feb 11 2022

Formula

E.g.f.: -log(1+log(1+log(1+log(1-x)))).

A341587 E.g.f.: log(1 + log(1 - x))^2 / 2.

Original entry on oeis.org

1, 6, 40, 315, 2908, 30989, 375611, 5112570, 77305024, 1286640410, 23387713930, 461187042992, 9808283703684, 223833267479764, 5456669750439788, 141540592345674800, 3892707724320135616, 113153294901088030320, 3466501398608272647984, 111636571036702743967104, 3770483138507706753943584
Offset: 2

Views

Author

Ilya Gutkovskiy, Feb 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Log[1 + Log[1 - x]]^2/2, {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 2] &
    Table[Sum[Abs[StirlingS1[n, k] StirlingS1[k, 2]], {k, 2, n}], {n, 2, 22}]

Formula

a(n) = Sum_{k=2..n} |Stirling1(n, k) * Stirling1(k, 2)|.
a(n) = Sum_{k=2..n} |Stirling1(n, k)| * (k-1)! * H(k-1), where H(k) is the k-th harmonic number.
a(n) = Sum_{k=1..n-1} binomial(n-1, k) * A003713(k) * A003713(n-k).
a(n) = A052822(n) / 2.
a(n) ~ sqrt(2*Pi) * log(n) * n^(n - 1/2) / (exp(1) - 1)^n * (1 + (gamma - log(exp(1) - 1))/log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 15 2021

A000406 Coefficients of iterated exponentials.

Original entry on oeis.org

1, 6, 57, 741, 12244, 245755, 5809875, 158198200, 4877852505, 168055077875, 6400217406500, 267058149580823, 12118701719205803, 594291742526530761, 31323687504696772151, 1766116437541895988303, 106080070002238888908150
Offset: 1

Views

Author

Keywords

References

  • J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[-Log[1+Log[1+Log[1+Log[1+ Log[1+ Log[1- x]]]]]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Nov 03 2015 *)
  • PARI
    T(n, k) = if(k==1, (n-1)!, sum(j=1, n, abs(stirling(n, j, 1))*T(j, k-1)));
    a(n) = T(n, 6); \\ Seiichi Manyama, Feb 11 2022
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(-log(1+log(1+log(1+log(1+log(1+log(1-x)))))))) \\ Seiichi Manyama, Feb 11 2022

Formula

E.g.f.: -log(1+log(1+log(1+log(1+log(1+log(1-x)))))).

A001765 Coefficients of iterated exponentials.

Original entry on oeis.org

1, 7, 77, 1155, 21973, 506989, 13761937, 429853851, 15192078027, 599551077881, 26140497946017, 1248134313062231, 64783855286002573, 3632510833677434324, 218845138322691595694, 14099918095287618382033, 967508237903439910445565, 70447525748137979196484589
Offset: 1

Views

Author

Keywords

References

  • J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
  • T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[-Log[1+Log[1+Log[1+Log[1+Log[1+Log[1+Log[1-x]]]]]]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 07 2023 *)
  • PARI
    T(n, k) = if(k==1, (n-1)!, sum(j=1, n, abs(stirling(n, j, 1))*T(j, k-1)));
    a(n) = T(n, 7); \\ Seiichi Manyama, Feb 11 2022
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(-log(1+log(1+log(1+log(1+log(1+log(1+log(1-x))))))))) \\ Seiichi Manyama, Feb 11 2022

Formula

E.g.f.: -log(1+log(1+log(1+log(1+log(1+log(1+log(1-x))))))).

A341588 E.g.f.: -log(1 + log(1 - x))^3 / 6.

Original entry on oeis.org

1, 12, 130, 1485, 18508, 253400, 3805723, 62437500, 1113510409, 21479997957, 446094038806, 9930796412082, 236037249893092, 5968192832899412, 160007282538148508, 4534905316824903144, 135500246340709682692, 4257646241716404353684, 140366073694357927723936, 4845119946789226304526392
Offset: 3

Views

Author

Ilya Gutkovskiy, Feb 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[-Log[1 + Log[1 - x]]^3/6, {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 3] &
    Table[Sum[Abs[StirlingS1[n, k] StirlingS1[k, 3]], {k, 3, n}], {n, 3, 22}]

Formula

a(n) = Sum_{k=3..n} |Stirling1(n, k) * Stirling1(k, 3)|.
a(n) ~ (n-1)! * log(n)^2 / (2 * (1 - exp(-1))^n) * (1 + (2*gamma - 2*log(exp(1) - 1)) / log(n) + (gamma^2 - Pi^2/6 - 2*log(exp(1) - 1)*gamma + log(exp(1)-1)^2) / log(n)^2). - Vaclav Kotesovec, Jun 04 2022
Showing 1-10 of 37 results. Next