A003713
Expansion of e.g.f. log(1/(1+log(1-x))).
Original entry on oeis.org
0, 1, 2, 7, 35, 228, 1834, 17582, 195866, 2487832, 35499576, 562356672, 9794156448, 186025364016, 3826961710272, 84775065603888, 2011929826983504, 50929108873336320, 1369732445916318336, 39005083331889816960, 1172419218038422659456, 37095226237402478348544
Offset: 0
- J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 125.
- Jekuthiel Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353. [Annotated scanned copy]
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 34
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 298
-
series(ln(1/(1+ln(1-x))),x,17);
with (combstruct): M[ 1798 ] := [ A,{A=Cycle(Cycle(Z))},labeled ]:
-
With[{nn=20},CoefficientList[Series[Log[1/(1+Log[1-x])],{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Dec 15 2012 *)
Table[Sum[(-1)^(n-k) * (k-1)! * StirlingS1[n, k], {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 19 2024 *)
-
a(n)=if(n<0,0,n!*polcoeff(-log(1+log(1-x+x*O(x^n))),n))
A000359
Coefficients of iterated exponentials.
Original entry on oeis.org
1, 5, 40, 440, 6170, 105315, 2120610, 49242470, 1296133195, 38152216495, 1242274374380, 44345089721923, 1722416374173854, 72330102999829054, 3265871028909088036, 157797437377747327987, 8124524883679977475839, 444098724261935142753430
Offset: 1
- J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=1..100
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Jekuthiel Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353. [Annotated scanned copy]
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 301
-
max = 20; CoefficientList[-Log[1 + Log[1 + Log[1 + Log[1 + Log[1 - x]]]]]/x + O[x]^max, x]*Range[max]! (* Jean-François Alcover, Feb 08 2016 *)
-
T(n, k) = if(k==1, (n-1)!, sum(j=1, n, abs(stirling(n, j, 1))*T(j, k-1)));
a(n) = T(n, 5); \\ Seiichi Manyama, Feb 11 2022
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(-log(1+log(1+log(1+log(1+log(1-x))))))) \\ Seiichi Manyama, Feb 11 2022
A000268
E.g.f.: -log(1+log(1+log(1-x))).
Original entry on oeis.org
1, 3, 15, 105, 947, 10472, 137337, 2085605, 36017472, 697407850, 14969626900, 352877606716, 9064191508018, 252024567201300, 7542036496650006, 241721880399970938, 8261159383595659128, 299916384730043070880, 11526945327529620432872, 467583770376898192016104
Offset: 1
- J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 1..400 (terms 1..100 from T. D. Noe)
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Jekuthiel Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353. [Annotated scanned copy]
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 299
- Kruchinin Vladimir Victorovich, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
a(n)=|
A039815(n, 1)| (first column of triangle).
-
max = 20; CoefficientList[-Log[1 + Log[1 + Log[1 - x]]]/x + O[x]^max, x] * Range[max]! (* Jean-François Alcover, Feb 06 2016 *)
-
a(n) = sum(m=1, n, (m-1)!*(-1)^(n+m)*sum(k=m, n, stirling(n,k,1)*stirling(k,m,1))); \\ Michel Marcus, Feb 06 2016
A000406
Coefficients of iterated exponentials.
Original entry on oeis.org
1, 6, 57, 741, 12244, 245755, 5809875, 158198200, 4877852505, 168055077875, 6400217406500, 267058149580823, 12118701719205803, 594291742526530761, 31323687504696772151, 1766116437541895988303, 106080070002238888908150
Offset: 1
- J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=1..100
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Jekuthiel Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353. [Annotated scanned copy]
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 302
-
With[{nn=20},CoefficientList[Series[-Log[1+Log[1+Log[1+Log[1+ Log[1+ Log[1- x]]]]]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Nov 03 2015 *)
-
T(n, k) = if(k==1, (n-1)!, sum(j=1, n, abs(stirling(n, j, 1))*T(j, k-1)));
a(n) = T(n, 6); \\ Seiichi Manyama, Feb 11 2022
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(-log(1+log(1+log(1+log(1+log(1+log(1-x)))))))) \\ Seiichi Manyama, Feb 11 2022
A001765
Coefficients of iterated exponentials.
Original entry on oeis.org
1, 7, 77, 1155, 21973, 506989, 13761937, 429853851, 15192078027, 599551077881, 26140497946017, 1248134313062231, 64783855286002573, 3632510833677434324, 218845138322691595694, 14099918095287618382033, 967508237903439910445565, 70447525748137979196484589
Offset: 1
- J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
- T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
With[{nn=20},CoefficientList[Series[-Log[1+Log[1+Log[1+Log[1+Log[1+Log[1+Log[1-x]]]]]]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 07 2023 *)
-
T(n, k) = if(k==1, (n-1)!, sum(j=1, n, abs(stirling(n, j, 1))*T(j, k-1)));
a(n) = T(n, 7); \\ Seiichi Manyama, Feb 11 2022
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(-log(1+log(1+log(1+log(1+log(1+log(1+log(1-x))))))))) \\ Seiichi Manyama, Feb 11 2022
A039816
Triangle read by rows: matrix 4th power of the Stirling-1 triangle A008275.
Original entry on oeis.org
1, -4, 1, 26, -12, 1, -234, 152, -24, 1, 2696, -2210, 500, -40, 1, -37919, 36976, -10710, 1240, -60, 1, 630521, -704837, 245896, -36750, 2590, -84, 1, -12111114, 15132932, -6120324, 1109696, -101500, 4816, -112, 1, 264051201, -362099010, 165387680, -34990620, 3901296, -241164, 8232, -144, 1
Offset: 1
Triangle begins:
1;
-4, 1;
26, -12, 1;
-234, 152, -24, 1;
2696, -2210, 500, -40, 1;
-37919, 36976, -10710, 1240, -60, 1;
...
-
T:= Matrix(10,10,(i,j) -> `if`(i>= j, combinat:-stirling1(i,j),0)):
M:= T^4:
seq(seq(M[i,j],j=1..i),i=1..10); # Robert Israel, Sep 12 2022
-
Flatten[Table[SeriesCoefficient[(Log[1+Log[1+Log[1+Log[1+x]]]])^k,{x,0,n}] n!/k!, {n,9}, {k,n}]] (* Stefano Spezia, Sep 12 2022 *)
A302358
a(n) = coefficient of x^n in the n-th iteration (n-fold self-composition) of e.g.f. -log(1 - x).
Original entry on oeis.org
1, 2, 15, 234, 6170, 245755, 13761937, 1030431500, 99399019626, 12003835242090, 1773907219147800, 314880916127332489, 66109411013740671200, 16204039283106534720952, 4585484528618722750937783, 1483746673734716952089913364, 544359300175753347889146067840
Offset: 1
The initial coefficients of successive iterations of e.g.f. A(x) = -log(1 - x) are as follows:
n = 1: 0, (1), 1, 2, 6, 24, ... e.g.f. A(x)
n = 2: 0, 1, (2), 7, 35, 228, ... e.g.f. A(A(x))
n = 3: 0, 1, 3, (15), 105, 947, ... e.g.f. A(A(A(x)))
n = 4: 0, 1, 4, 26, (234), 2696, ... e.g.f. A(A(A(A(x))))
n = 5: 0, 1, 5, 40, 440, (6170), ... e.g.f. A(A(A(A(A(x)))))
Cf.
A000268,
A000310,
A000359,
A000406,
A001765,
A003713,
A104150,
A139383,
A158832,
A174482,
A261280.
-
g:= x-> -log(1-x):
a:= n-> n! * coeff(series((g@@n)(x), x, n+1), x, n):
seq(a(n), n=1..19); # Alois P. Heinz, Feb 11 2022
-
Table[n! SeriesCoefficient[Nest[Function[x, -Log[1 - x]], x, n], {x, 0, n}], {n, 17}]
-
T(n, k) = if(k==1, (n-1)!, sum(j=1, n, abs(stirling(n, j, 1))*T(j, k-1)));
a(n) = T(n, n); \\ Seiichi Manyama, Feb 11 2022
A111933
Triangle read by rows, generated from Stirling cycle numbers.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 7, 6, 1, 4, 15, 35, 24, 1, 5, 26, 105, 228, 120, 1, 6, 40, 234, 947, 1834, 720, 1, 7, 57, 440, 2696, 10472, 17582, 5040, 1, 8, 77, 741, 6170, 37919, 137337, 195866, 40320, 1, 9, 100, 1155, 12244, 105315, 630521, 2085605, 2487832, 362880
Offset: 1
Row 5 of the triangle = 1, 4, 15, 35, 24; generated from M^n * [1,0,0,0,...] (n = 1 through 5); then take antidiagonals.
Terms in the array, first few rows are:
1, 1, 2, 6, 24, 120, ...
1, 2, 7, 35, 228, 1834, ...
1, 3, 15, 105, 947, 10472, ...
1, 4, 26, 234, 2697, 37919, ...
1, 5, 40, 440, 6170, 105315, ...
1, 6, 57, 741, 12244, 245755, ...
...
First few rows of the triangle are:
1;
1, 1;
1, 2, 2;
1, 3, 7, 6;
1, 4, 15, 35, 24;
1, 5, 26, 105, 228, 120;
1, 6, 40, 234, 947, 1834, 720;
...
A351422
Expansion of e.g.f. -log(1 - log(1 + log(1 + log(1+x)))).
Original entry on oeis.org
1, -2, 8, -48, 386, -3905, 47701, -683592, 11250291, -209168071, 4336482905, -99197868847, 2481962140797, -67426166949102, 1976463051528507, -62178381389729317, 2089532143617395264, -74702625442877063902, 2830904065389397804534, -113348477836878447492630
Offset: 1
-
T[n_, 1] := (n - 1)!; T[n_, k_] := T[n, k] = Sum[StirlingS1[n, j] * T[j, k - 1], {j, 1, n}]; a[n_] := T[n, 4]; Array[a, 20] (* Amiram Eldar, Feb 11 2022 *)
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(-log(1-log(1+log(1+log(1+x))))))
-
T(n, k) = if(k==1, (n-1)!, sum(j=1, n, stirling(n, j, 1)*T(j, k-1)));
a(n) = T(n, 4);
A351526
Expansion of e.g.f. (log(1 + log(1 + log(1 + log(1+ x)))))^2 / 2.
Original entry on oeis.org
1, -12, 152, -2210, 36976, -704837, 15132932, -362099010, 9566898126, -276863733707, 8715530417502, -296641340905299, 10858928017129838, -425542158316462627, 17779220784851800828, -789053832262002586555, 37076561046965367191298
Offset: 2
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(log(1+log(1+log(1+log(1+x))))^2/2))
-
T(n, k) = if(k==0, n==1, sum(j=0, n, abs(stirling(n, j, 1))*T(j, k-1)));
a(n) = (-1)^n*sum(k=1, n-1, binomial(n-1, k)*T(k, 4)*T(n-k, 4));
Showing 1-10 of 10 results.
Comments