A003713
Expansion of e.g.f. log(1/(1+log(1-x))).
Original entry on oeis.org
0, 1, 2, 7, 35, 228, 1834, 17582, 195866, 2487832, 35499576, 562356672, 9794156448, 186025364016, 3826961710272, 84775065603888, 2011929826983504, 50929108873336320, 1369732445916318336, 39005083331889816960, 1172419218038422659456, 37095226237402478348544
Offset: 0
- J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 125.
- Jekuthiel Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353. [Annotated scanned copy]
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 34
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 298
-
series(ln(1/(1+ln(1-x))),x,17);
with (combstruct): M[ 1798 ] := [ A,{A=Cycle(Cycle(Z))},labeled ]:
-
With[{nn=20},CoefficientList[Series[Log[1/(1+Log[1-x])],{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Dec 15 2012 *)
Table[Sum[(-1)^(n-k) * (k-1)! * StirlingS1[n, k], {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 19 2024 *)
-
a(n)=if(n<0,0,n!*polcoeff(-log(1+log(1-x+x*O(x^n))),n))
A000268
E.g.f.: -log(1+log(1+log(1-x))).
Original entry on oeis.org
1, 3, 15, 105, 947, 10472, 137337, 2085605, 36017472, 697407850, 14969626900, 352877606716, 9064191508018, 252024567201300, 7542036496650006, 241721880399970938, 8261159383595659128, 299916384730043070880, 11526945327529620432872, 467583770376898192016104
Offset: 1
- J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 1..400 (terms 1..100 from T. D. Noe)
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Jekuthiel Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353. [Annotated scanned copy]
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 299
- Kruchinin Vladimir Victorovich, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
a(n)=|
A039815(n, 1)| (first column of triangle).
-
max = 20; CoefficientList[-Log[1 + Log[1 + Log[1 - x]]]/x + O[x]^max, x] * Range[max]! (* Jean-François Alcover, Feb 06 2016 *)
-
a(n) = sum(m=1, n, (m-1)!*(-1)^(n+m)*sum(k=m, n, stirling(n,k,1)*stirling(k,m,1))); \\ Michel Marcus, Feb 06 2016
A000310
Coefficients of iterated exponentials.
Original entry on oeis.org
1, 4, 26, 234, 2696, 37919, 630521, 12111114, 264051201, 6445170229, 174183891471, 5164718385337, 166737090160871, 5822980248613990, 218756388226681557, 8797723991458469015, 377159237609540937788, 17170729962232112834302, 827382365085791968518198, 42070004707327023844695198
Offset: 1
- J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=1..100
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Jekuthiel Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353. [Annotated scanned copy]
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 300
-
max = 20; CoefficientList[-Log[1 + Log[1 + Log[1 + Log[1 - x]]]]/x + O[x]^max, x]*Range[max]! (* Jean-François Alcover, Feb 07 2016 *)
-
T(n, k) = if(k==1, (n-1)!, sum(j=1, n, abs(stirling(n, j, 1))*T(j, k-1)));
a(n) = T(n, 4); \\ Seiichi Manyama, Feb 11 2022
-
my(x='x+O('x^40)); Vec(serlaplace(-log(1+log(1+log(1+log(1-x)))))); \\ Michel Marcus, Feb 11 2022
A000406
Coefficients of iterated exponentials.
Original entry on oeis.org
1, 6, 57, 741, 12244, 245755, 5809875, 158198200, 4877852505, 168055077875, 6400217406500, 267058149580823, 12118701719205803, 594291742526530761, 31323687504696772151, 1766116437541895988303, 106080070002238888908150
Offset: 1
- J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=1..100
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Jekuthiel Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353. [Annotated scanned copy]
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 302
-
With[{nn=20},CoefficientList[Series[-Log[1+Log[1+Log[1+Log[1+ Log[1+ Log[1- x]]]]]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Nov 03 2015 *)
-
T(n, k) = if(k==1, (n-1)!, sum(j=1, n, abs(stirling(n, j, 1))*T(j, k-1)));
a(n) = T(n, 6); \\ Seiichi Manyama, Feb 11 2022
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(-log(1+log(1+log(1+log(1+log(1+log(1-x)))))))) \\ Seiichi Manyama, Feb 11 2022
A001765
Coefficients of iterated exponentials.
Original entry on oeis.org
1, 7, 77, 1155, 21973, 506989, 13761937, 429853851, 15192078027, 599551077881, 26140497946017, 1248134313062231, 64783855286002573, 3632510833677434324, 218845138322691595694, 14099918095287618382033, 967508237903439910445565, 70447525748137979196484589
Offset: 1
- J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
- T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
With[{nn=20},CoefficientList[Series[-Log[1+Log[1+Log[1+Log[1+Log[1+Log[1+Log[1-x]]]]]]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 07 2023 *)
-
T(n, k) = if(k==1, (n-1)!, sum(j=1, n, abs(stirling(n, j, 1))*T(j, k-1)));
a(n) = T(n, 7); \\ Seiichi Manyama, Feb 11 2022
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(-log(1+log(1+log(1+log(1+log(1+log(1+log(1-x))))))))) \\ Seiichi Manyama, Feb 11 2022
A039817
Triangle read by rows: matrix 5th power of the Stirling-1 triangle A008275.
Original entry on oeis.org
1, -5, 1, 40, -15, 1, -440, 235, -30, 1, 6170, -4200, 775, -50, 1, -105315, 86020, -20475, 1925, -75, 1, 2120610, -2001055, 577570, -70525, 4025, -105, 1, -49242470, 52305780, -17609620, 2623145, -195300, 7490, -140, 1, 1296133195, -1520815230, 581516560, -101595060, 9264045, -464940, 12810, -180, 1
Offset: 1
Triangle begins:
1;
-5, 1;
40, -15, 1;
-440, 235, -30, 1;
6170, -4200, 775, -50, 1;
-105315, 86020, -20475, 1925, -75, 1;
...
-
Flatten[Table[SeriesCoefficient[(Log[1+Log[1+Log[1+Log[1+Log[1+x]]]]])^k,{x,0,n}] n!/k!, {n,9}, {k,n}]] (* Stefano Spezia, Sep 12 2022 *)
A302358
a(n) = coefficient of x^n in the n-th iteration (n-fold self-composition) of e.g.f. -log(1 - x).
Original entry on oeis.org
1, 2, 15, 234, 6170, 245755, 13761937, 1030431500, 99399019626, 12003835242090, 1773907219147800, 314880916127332489, 66109411013740671200, 16204039283106534720952, 4585484528618722750937783, 1483746673734716952089913364, 544359300175753347889146067840
Offset: 1
The initial coefficients of successive iterations of e.g.f. A(x) = -log(1 - x) are as follows:
n = 1: 0, (1), 1, 2, 6, 24, ... e.g.f. A(x)
n = 2: 0, 1, (2), 7, 35, 228, ... e.g.f. A(A(x))
n = 3: 0, 1, 3, (15), 105, 947, ... e.g.f. A(A(A(x)))
n = 4: 0, 1, 4, 26, (234), 2696, ... e.g.f. A(A(A(A(x))))
n = 5: 0, 1, 5, 40, 440, (6170), ... e.g.f. A(A(A(A(A(x)))))
Cf.
A000268,
A000310,
A000359,
A000406,
A001765,
A003713,
A104150,
A139383,
A158832,
A174482,
A261280.
-
g:= x-> -log(1-x):
a:= n-> n! * coeff(series((g@@n)(x), x, n+1), x, n):
seq(a(n), n=1..19); # Alois P. Heinz, Feb 11 2022
-
Table[n! SeriesCoefficient[Nest[Function[x, -Log[1 - x]], x, n], {x, 0, n}], {n, 17}]
-
T(n, k) = if(k==1, (n-1)!, sum(j=1, n, abs(stirling(n, j, 1))*T(j, k-1)));
a(n) = T(n, n); \\ Seiichi Manyama, Feb 11 2022
A111933
Triangle read by rows, generated from Stirling cycle numbers.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 7, 6, 1, 4, 15, 35, 24, 1, 5, 26, 105, 228, 120, 1, 6, 40, 234, 947, 1834, 720, 1, 7, 57, 440, 2696, 10472, 17582, 5040, 1, 8, 77, 741, 6170, 37919, 137337, 195866, 40320, 1, 9, 100, 1155, 12244, 105315, 630521, 2085605, 2487832, 362880
Offset: 1
Row 5 of the triangle = 1, 4, 15, 35, 24; generated from M^n * [1,0,0,0,...] (n = 1 through 5); then take antidiagonals.
Terms in the array, first few rows are:
1, 1, 2, 6, 24, 120, ...
1, 2, 7, 35, 228, 1834, ...
1, 3, 15, 105, 947, 10472, ...
1, 4, 26, 234, 2697, 37919, ...
1, 5, 40, 440, 6170, 105315, ...
1, 6, 57, 741, 12244, 245755, ...
...
First few rows of the triangle are:
1;
1, 1;
1, 2, 2;
1, 3, 7, 6;
1, 4, 15, 35, 24;
1, 5, 26, 105, 228, 120;
1, 6, 40, 234, 947, 1834, 720;
...
A292691
a(n) = C(A001359(n)), n >= 1, with C(n) = (4*((n-1)! + 1) + n)/(n*(n+2)) for n >= 2.
Original entry on oeis.org
1, 3, 101505, 259105757127, 1356566605613854774200240267, 1851197466245939272480116323530608949000567215
Offset: 1
a(2) = 3, because A001359(2) = 5 and C(5) = (4*(4! + 1) + 5)/(5*7) = 3.
a(2) = 3 because A014574(2) = 6 and delta(6) = (4*4! + 6 + 3)/35 = 3.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford Science Publications, 1979.
- P. Ribenboim, The New Book of Prime Number Records, Springer-Verlag NY 1996, pp. 259-260 (a proof of Clement's theorem).
-
p1[1] = 3; p1[n_] := p1[n] = (p = NextPrime[p1[n-1]]; While[!PrimeQ[p + 2], p = NextPrime[p]]; p);
a[n_] := (4*((p1[n] - 1)! + 1) + p1[n])/(p1[n]*(p1[n] + 2));
Array[a, 6] (* Jean-François Alcover, Nov 04 2017 *)
-
c(n) = (4*(n - 2)! + n + 3) / (n^2 - 1);
lista(nn) = forprime(p=2, nn, if (isprime(p+2), print1(c(p+1), ", "));); \\ Michel Marcus, Sep 21 2017
-
# Python version 2.7
import math
from sympy import *
list = []
n = 3
l = 1 # parameter that indicates the desired length of the list
x = 1
while x <= l:
y = (4*factorial(n-2))+n+3
z = n**2 - 1
if y % z == 0:
print (y/z)
list.append(y/z)
n+=1
x+=1
A351423
Expansion of e.g.f. -log(1 - log(1 + log(1 + log(1 + log(1+x))))).
Original entry on oeis.org
1, -3, 16, -124, 1270, -16243, 249776, -4494334, 92716855, -2158505443, 55996266046, -1602132913687, 50124833578256, -1702501170925098, 62391472267252322, -2453892459756494459, 103101294099324376489, -4608723131704380915202
Offset: 1
-
T[n_, 1] := (n - 1)!; T[n_, k_] := T[n, k] = Sum[StirlingS1[n, j] * T[j, k - 1], {j, 1, n}]; a[n_] := T[n, 5]; Array[a, 18] (* Amiram Eldar, Feb 11 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(-log(1-log(1+log(1+log(1+log(1+x)))))))
-
T(n, k) = if(k==1, (n-1)!, sum(j=1, n, stirling(n, j, 1)*T(j, k-1)));
a(n) = T(n, 5);
Showing 1-10 of 12 results.
Comments