A039814
Matrix square of Stirling-1 triangle A008275.
Original entry on oeis.org
1, -2, 1, 7, -6, 1, -35, 40, -12, 1, 228, -315, 130, -20, 1, -1834, 2908, -1485, 320, -30, 1, 17582, -30989, 18508, -5005, 665, -42, 1, -195866, 375611, -253400, 81088, -13650, 1232, -56, 1, 2487832, -5112570, 3805723, -1389612, 279048, -32130, 2100, -72, 1
Offset: 1
Triangle begins:
1;
-2, 1;
7, -6, 1;
-35, 40, -12, 1;
228, -315, 130, -20, 1;
-1834, 2908, -1485, 320, -30, 1;
...
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> (-1)^n*add(k!*abs(Stirling1(n+1,k+1)), k=0..n), 10); # Peter Luschny, Jan 28 2016
-
max = 9; t = Table[StirlingS1[n, k], {n, 1, max}, {k, 1, max}]; t2 = t.t; Table[t2[[n, k]], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 01 2013 *)
rows = 9;
t = Table[(-1)^n*Sum[k!*Abs[StirlingS1[n+1, k+1]], {k,0,n}], {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
-
T(n, k) = sum(j=0, n, stirling(n, j, 1)*stirling(j, k, 1)); \\ Seiichi Manyama, Feb 13 2022
A341587
E.g.f.: log(1 + log(1 - x))^2 / 2.
Original entry on oeis.org
1, 6, 40, 315, 2908, 30989, 375611, 5112570, 77305024, 1286640410, 23387713930, 461187042992, 9808283703684, 223833267479764, 5456669750439788, 141540592345674800, 3892707724320135616, 113153294901088030320, 3466501398608272647984, 111636571036702743967104, 3770483138507706753943584
Offset: 2
-
nmax = 22; CoefficientList[Series[Log[1 + Log[1 - x]]^2/2, {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 2] &
Table[Sum[Abs[StirlingS1[n, k] StirlingS1[k, 2]], {k, 2, n}], {n, 2, 22}]
A325872
T(n, k) = [x^k] Sum_{k=0..n} Stirling1(n, k)*FallingFactorial(x, k), triangle read by rows, for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, -2, 1, 0, 7, -6, 1, 0, -35, 40, -12, 1, 0, 228, -315, 130, -20, 1, 0, -1834, 2908, -1485, 320, -30, 1, 0, 17582, -30989, 18508, -5005, 665, -42, 1, 0, -195866, 375611, -253400, 81088, -13650, 1232, -56, 1, 0, 2487832, -5112570, 3805723, -1389612, 279048, -32130, 2100, -72, 1
Offset: 0
Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, -2, 1]
[3] [0, 7, -6, 1]
[4] [0, -35, 40, -12, 1]
[5] [0, 228, -315, 130, -20, 1]
[6] [0, -1834, 2908, -1485, 320, -30, 1]
[7] [0, 17582, -30989, 18508, -5005, 665, -42, 1]
[8] [0, -195866, 375611, -253400, 81088, -13650, 1232, -56, 1]
[9] [0, 2487832, -5112570, 3805723, -1389612, 279048, -32130, 2100, -72, 1]
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened).
- Gabriella Bretti, Pierpaolo Natalini and Paolo E. Ricci, A new set of Sheffer-Bell polynomials and logarithmic numbers, Georgian Mathematical Journal, Feb. 2019, page 8.
- Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
-
p[n_] := Sum[StirlingS1[n, k] FactorialPower[x, k] , {k, 0, n}];
Table[CoefficientList[FunctionExpand[p[n]], x], {n, 0, 9}] // Flatten
-
T(n, k) = sum(j=k, n, stirling(n, j, 1)*stirling(j, k, 1)); \\ Seiichi Manyama, Apr 18 2025
-
def a_row(n):
s = sum((-1)^(n-k)*stirling_number1(n,k)*falling_factorial(x,k) for k in (0..n))
return expand(s).list()
[a_row(n) for n in (0..9)]
A341589
a(n) = Sum_{k=n..2*n} |Stirling1(2*n, k) * Stirling1(k, n)|.
Original entry on oeis.org
1, 2, 40, 1485, 81088, 5856900, 526685269, 56704848200, 7112345477952, 1018548226480356, 163987811350464660, 29321558852248050388, 5764958268855541178967, 1236150756215397667568170, 287086392921014590422630300, 71789589754855255636302048525, 19231403740347427723119910379040
Offset: 0
-
Table[Sum[Abs[StirlingS1[2 n, k] StirlingS1[k, n]], {k, n, 2 n}], {n, 0, 16}]
Table[((2 n)!/n!) SeriesCoefficient[(-Log[1 + Log[1 - x]])^n, {x, 0, 2 n}], {n, 0, 16}]
-
a(n) = sum(k=n, 2*n, abs(stirling(2*n, k, 1)*stirling(k, n, 1))); \\ Michel Marcus, Feb 16 2021
A383172
Expansion of e.g.f. -log(1 + log(1 - 2*x)/2)^3 / 6.
Original entry on oeis.org
0, 0, 0, 1, 18, 295, 5115, 96838, 2012724, 45825148, 1137703140, 30643915984, 891001127016, 27835772321344, 930387252759328, 33141746095999552, 1253756533365348992, 50210676392866266880, 2122613151692627299584, 94470824166941637093376
Offset: 0
-
a(n) = sum(k=3, n, 2^(n-k)*abs(stirling(n, k, 1)*stirling(k, 3, 1)));
Showing 1-5 of 5 results.
Comments