A039814
Matrix square of Stirling-1 triangle A008275.
Original entry on oeis.org
1, -2, 1, 7, -6, 1, -35, 40, -12, 1, 228, -315, 130, -20, 1, -1834, 2908, -1485, 320, -30, 1, 17582, -30989, 18508, -5005, 665, -42, 1, -195866, 375611, -253400, 81088, -13650, 1232, -56, 1, 2487832, -5112570, 3805723, -1389612, 279048, -32130, 2100, -72, 1
Offset: 1
Triangle begins:
1;
-2, 1;
7, -6, 1;
-35, 40, -12, 1;
228, -315, 130, -20, 1;
-1834, 2908, -1485, 320, -30, 1;
...
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> (-1)^n*add(k!*abs(Stirling1(n+1,k+1)), k=0..n), 10); # Peter Luschny, Jan 28 2016
-
max = 9; t = Table[StirlingS1[n, k], {n, 1, max}, {k, 1, max}]; t2 = t.t; Table[t2[[n, k]], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 01 2013 *)
rows = 9;
t = Table[(-1)^n*Sum[k!*Abs[StirlingS1[n+1, k+1]], {k,0,n}], {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
-
T(n, k) = sum(j=0, n, stirling(n, j, 1)*stirling(j, k, 1)); \\ Seiichi Manyama, Feb 13 2022
A051141
Triangle read by rows: a(n, m) = S1(n, m)*3^(n-m), where S1 are the signed Stirling numbers of first kind A008275 (n >= 1, 1 <= m <= n).
Original entry on oeis.org
1, -3, 1, 18, -9, 1, -162, 99, -18, 1, 1944, -1350, 315, -30, 1, -29160, 22194, -6075, 765, -45, 1, 524880, -428652, 131544, -19845, 1575, -63, 1, -11022480, 9526572, -3191076, 548289, -52920, 2898, -84, 1, 264539520, -239660208
Offset: 1
Triangle starts:
1;
-3, 1;
18, -9, 1;
-162, 99, -18, 1;
1944, -1350, 315, -30, 1;
-29160, 22194, -6075, 765, -45, 1;
524880, -428652, 131544, -19845, 1575, -63, 1;
---
Row polynomial E(3,x) = 18*x-9*x^2+x^3.
From _Paul Barry_, Apr 29 2009: (Start)
The unsigned array [1/(1 - 3*x), log(1/(1 - 3*x)^(1/3))] has production matrix
3, 1;
9, 6, 1;
27, 27, 9, 1;
81, 108, 54, 12, 1;
243, 405, 270, 90, 15, 1;
729, 1458, 1215, 540, 135, 18, 1;
...
which is A007318^{3} beheaded (by viewing A007318 as a lower triangular matrix). See the comment above. (End)
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales, Two Approaches to Normal Order Coefficients, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
- Wolfdieter Lang, First 10 rows.
- D. S. Mitrinovic and M. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 77 (1962), 1-77.
First (m=1) column sequence is:
A032031(n-1).
Row sums (signed triangle):
A008544(n-1)*(-1)^(n-1).
Row sums (unsigned triangle):
A007559(n).
-
a[n_, m_] /; n >= m >= 1 := a[n, m] = a[n-1, m-1] - 3(n-1)*a[n-1, m]; a[n_, m_] /; n < m = 0; a[, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]][[1 ;; 38]] (* _Jean-François Alcover, Jun 01 2011, after formula *)
Table[StirlingS1[n, m]*3^(n - m), {n, 1, 10}, {m, 1, n}]//Flatten (* G. C. Greubel, Oct 24 2017 *)
-
for(n=1,10, for(m=1,n, print1(stirling(n,m,1)*3^(n-m), ", "))) \\ G. C. Greubel, Oct 24 2017
-
# uses[bell_transform from A264428]
triplefactorial = lambda n: 3^n*factorial(n)
def A051141_row(n):
trifact = [triplefactorial(k) for k in (0..n)]
return bell_transform(n, trifact)
[A051141_row(n) for n in (0..8)] # Peter Luschny, Dec 21 2015
Name clarified using a formula of the author by
Peter Luschny, Dec 23 2015
A039817
Triangle read by rows: matrix 5th power of the Stirling-1 triangle A008275.
Original entry on oeis.org
1, -5, 1, 40, -15, 1, -440, 235, -30, 1, 6170, -4200, 775, -50, 1, -105315, 86020, -20475, 1925, -75, 1, 2120610, -2001055, 577570, -70525, 4025, -105, 1, -49242470, 52305780, -17609620, 2623145, -195300, 7490, -140, 1, 1296133195, -1520815230, 581516560, -101595060, 9264045, -464940, 12810, -180, 1
Offset: 1
Triangle begins:
1;
-5, 1;
40, -15, 1;
-440, 235, -30, 1;
6170, -4200, 775, -50, 1;
-105315, 86020, -20475, 1925, -75, 1;
...
-
Flatten[Table[SeriesCoefficient[(Log[1+Log[1+Log[1+Log[1+Log[1+x]]]]])^k,{x,0,n}] n!/k!, {n,9}, {k,n}]] (* Stefano Spezia, Sep 12 2022 *)
A039815
Triangle read by rows: matrix cube of the Stirling-1 triangle A008275.
Original entry on oeis.org
1, -3, 1, 15, -9, 1, -105, 87, -18, 1, 947, -975, 285, -30, 1, -10472, 12657, -4680, 705, -45, 1, 137337, -188090, 82887, -15960, 1470, -63, 1, -2085605, 3159699, -1598954, 370237, -43890, 2730, -84, 1, 36017472, -59326371, 33613353, -9009294, 1292067, -103950, 4662, -108, 1
Offset: 1
Triangle begins:
1;
-3, 1;
15, -9, 1;
-105, 87, -18, 1;
947, -975, 285, -30, 1;
-10472, 12657, -4680, 705, -45, 1;
...
-
T:= Matrix(10,10,(i,j) -> `if`(i>= j, combinat:-stirling1(i,j),0)):
M:= T^3:
seq(seq(M[i,j],j=1..i),i=1..10); # Robert Israel, Sep 12 2022
-
Flatten[Table[SeriesCoefficient[(Log[1+Log[1+Log[1+x]]])^k, {x,0,n}] n!/k!, {n,9}, {k,n}]] (* Stefano Spezia, Sep 12 2022 *)
A039816
Triangle read by rows: matrix 4th power of the Stirling-1 triangle A008275.
Original entry on oeis.org
1, -4, 1, 26, -12, 1, -234, 152, -24, 1, 2696, -2210, 500, -40, 1, -37919, 36976, -10710, 1240, -60, 1, 630521, -704837, 245896, -36750, 2590, -84, 1, -12111114, 15132932, -6120324, 1109696, -101500, 4816, -112, 1, 264051201, -362099010, 165387680, -34990620, 3901296, -241164, 8232, -144, 1
Offset: 1
Triangle begins:
1;
-4, 1;
26, -12, 1;
-234, 152, -24, 1;
2696, -2210, 500, -40, 1;
-37919, 36976, -10710, 1240, -60, 1;
...
-
T:= Matrix(10,10,(i,j) -> `if`(i>= j, combinat:-stirling1(i,j),0)):
M:= T^4:
seq(seq(M[i,j],j=1..i),i=1..10); # Robert Israel, Sep 12 2022
-
Flatten[Table[SeriesCoefficient[(Log[1+Log[1+Log[1+Log[1+x]]]])^k,{x,0,n}] n!/k!, {n,9}, {k,n}]] (* Stefano Spezia, Sep 12 2022 *)
A079641
Matrix product of Stirling2-triangle A008277(n,k) and unsigned Stirling1-triangle |A008275(n,k)|.
Original entry on oeis.org
1, 2, 1, 6, 6, 1, 26, 36, 12, 1, 150, 250, 120, 20, 1, 1082, 2040, 1230, 300, 30, 1, 9366, 19334, 13650, 4270, 630, 42, 1, 94586, 209580, 166376, 62160, 11900, 1176, 56, 1, 1091670, 2562354, 2229444, 952728, 220500, 28476, 2016, 72, 1, 14174522
Offset: 1
Triangle begins:
1;
2,1;
6,6,1;
26,36,12,1;
150,250,120,20,1;
1082,2040,1230,300,30,1;
...
Triangle (0,2,1,4,2,6,3,8,4,...) DELTA (1,0,1,0,1,0,1,0,1,...) begins:
1
0, 1
0, 2, 1
0, 6, 6, 1
0, 26, 36, 12, 1
0, 150, 250, 120, 20, 1
0, 1082, 2040, 1230, 300, 30, 1. - _Philippe Deléham_, Dec 22 2011
- Nick Early, Canonical Bases for Permutohedral Plates, arXiv:1712.08520 [math.CO], 2017.
- Nick Early, Honeycomb tessellations and canonical bases for permutohedral blades, arXiv:1810.03246 [math.CO], 2018.
- D. E. Knuth, Convolution polynomials, arXiv:math/9207221 [math.CA], 1992; The Mathematica J., 2 (1992), 67-78.
-
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> add((-1)^(n-k)*2^k*k!*combinat:-stirling2(n, k), k=0..n), 9); # Peter Luschny, Jan 26 2016
-
rows = 10;
t = Table[Sum[(-1)^(n-k)*2^k*k!*StirlingS2[n, k], {k,0,n}], {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
A112002
Seventh diagonal of triangle A008275 (Stirling1) and seventh column of |A008276|.
Original entry on oeis.org
720, 13068, 118124, 723680, 3416930, 13339535, 44990231, 135036473, 368411615, 928095740, 2185031420, 4853222764, 10246937272, 20692933630, 40171771630, 75289668850, 136717357942, 241276443496, 414908513800, 696829576300
Offset: 1
-
[StirlingFirst(n+6, n): n in [1..20]]; // Vincenzo Librandi, Aug 09 2015
-
A112002 := proc(n) combinat[stirling1](n+6,n) ; end proc: # R. J. Mathar, Jun 08 2011
-
Table[StirlingS1[n+6, n], {n, 1, 20}] (* Jean-François Alcover, Mar 05 2014 *)
-
[stirling_number1(n,n-6) for n in range(7, 27)] # Zerinvary Lajos, May 16 2009
A136124
Triangle read by rows: T(n,k) = (-1)^(n+k)*Sum_{j=1..k} s(n,j), where s(n,j) are the signed Stirling numbers of the first kind (n >= 2; 1 <= k <= n-1; s(n,j) = A008275(n,j)).
Original entry on oeis.org
1, 2, 1, 6, 5, 1, 24, 26, 9, 1, 120, 154, 71, 14, 1, 720, 1044, 580, 155, 20, 1, 5040, 8028, 5104, 1665, 295, 27, 1, 40320, 69264, 48860, 18424, 4025, 511, 35, 1, 362880, 663696, 509004, 214676, 54649, 8624, 826, 44, 1, 3628800, 6999840, 5753736, 2655764
Offset: 2
T(6,3)=71 because (-1)^9*[s(6,1)+s(6,2)+s(6,3)]=-(-120+274-225)=71.
Triangle starts:
1;
2, 1;
6, 5, 1;
24, 26, 9, 1;
120, 154, 71, 14, 1;
-
A136124_row := proc(n) local k,j; `if`(n=0,1,seq((-1)^(n+1-k)*add(stirling1(n+1,j), j=1..k),k=1..n)) end: seq(print(A136124_row(r)),r=1..6); # Peter Luschny, Sep 29 2011
with(combinat): T:=proc(n, k) options operator, arrow: (-1)^(n+k)*(sum(stirling1(n,j),j=1..k)) end proc: for n from 2 to 11 do seq(T(n,k),k=1..n-1) end do; # yields sequence in triangular form
-
nn = 10; Map[Select[#, # > 0 &] &,Range[0,nn]!CoefficientList[Series[Exp[(2 + y) Log[1/(1 - x)]], {x, 0, nn}], {x,y}]] // Flatten (* Geoffrey Critzer, Mar 13 2015 *)
A079640
Matrix product of unsigned Stirling1-triangle |A008275(n,k)| and unsigned Lah-triangle |A008297(n,k)|.
Original entry on oeis.org
1, 3, 1, 14, 9, 1, 88, 83, 18, 1, 694, 860, 275, 30, 1, 6578, 10084, 4245, 685, 45, 1, 72792, 132888, 69244, 14735, 1435, 63, 1, 920904, 1950024, 1209880, 318969, 41020, 2674, 84, 1, 13109088, 31580472, 22715972, 7133784, 1137549, 98028, 4578, 108, 1
Offset: 1
1; 3,1; 14,9,1; 88,83,18,1; 694,860,275,30,1; 6578,10084,4245,685,45,1; ...
-
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> add(k!*abs(combinat:-stirling1(n+1, k)), k=0..n+1), 9); # Peter Luschny, Jan 26 2016
-
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
M = BellMatrix[Function[n, Sum[k!*Abs[StirlingS1[n+1, k]], {k, 0, n+1}]], rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 26 2018, after Peter Luschny *)
A079642
Matrix product of unsigned Stirling1-triangle |A008275(n,k)| and Stirling1-triangle A008275(n,k).
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 1, 4, 0, 1, 8, 5, 10, 0, 1, 26, 58, 15, 20, 0, 1, 194, 217, 238, 35, 35, 0, 1, 1142, 2035, 1008, 728, 70, 56, 0, 1, 9736, 13470, 11611, 3444, 1848, 126, 84, 0, 1, 81384, 134164, 85410, 47815, 9660, 4116, 210, 120, 0, 1, 823392, 1243770, 983059
Offset: 1
1; 0,1; 1,0,1; 1,4,0,1; 8,5,10,0,1; 26,58,15,20,0,1; ...
-
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> add((-1)^n*(k-1)!*combinat:-stirling1(n+1, k), k=1..n+1), 9); # Peter Luschny, Jan 26 2016
-
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[Function[n, Sum[(-1)^n*(k-1)! StirlingS1[n+1, k], {k, 1, n+1} ] ], rows = 12];
Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
Showing 1-10 of 265 results.
Comments