cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A129063 Third column (m=2) of triangle A129062 and second column of triangle A079641.

Original entry on oeis.org

1, 6, 36, 250, 2040, 19334, 209580, 2562354, 34915680, 524986462, 8636859924, 154357103498, 2978418173640, 61718786864310, 1367098836863868, 32236969655283682, 806313056758966320, 21322699350055313678, 594440128269066768612, 17424632249851351374906
Offset: 0

Views

Author

Wolfdieter Lang, May 04 2007

Keywords

Crossrefs

A000629 gives second, resp. first column of A129062, resp. A079641.
Cf. A180875.

Programs

  • PARI
    N=20; x='x+O('x^N); f=exp(x)/(2-exp(x)); Vec(serlaplace(deriv(f*intformal(f)))) \\ Seiichi Manyama, Oct 22 2019

Formula

a(n) = A129062(n+2,2), n>=0.
a(n) = A079641(n+1,1), n>=0.
E.g.f.: (d^2/dx^2)((-log(2-exp(x)))^2)/2.
E.g.f.: d/dx (f(x) * Integral f(x) dx), where f(x) = exp(x)/(2-exp(x)), cf. A000629. - Seiichi Manyama, Oct 22 2019
a(n) ~ n! * n * log(n) / (log(2))^(n+2) * (1 + (gamma - log(2) - log(log(2))) / log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 22 2019

A129064 Fourth column (m=3) of triangle A129062 and third column of triangle A079641.

Original entry on oeis.org

1, 12, 120, 1230, 13650, 166376, 2229444, 32724810, 523531470, 9080409492, 169892449584, 3412891866566, 73300097535210, 1676670468061920, 40704197313912060, 1045464783485987298, 28328001168991093350
Offset: 0

Views

Author

Wolfdieter Lang, May 04 2007

Keywords

Crossrefs

A129063, A000629 give m=2, m=1 columns.

Formula

a(n) = A129062(n+3,3), n>=0.
a(n) = A079641(n+2,2), n>=0.
E.g.f.: (d^3/dx^3)*((-log(2-exp(x)))^3)/3!.

A075729 Number of different hierarchical orderings that can be formed from n labeled elements: these are divided into groups and the elements in each group are then arranged in a "preferential arrangement" or "weak order" as in A000670.

Original entry on oeis.org

1, 1, 4, 23, 173, 1602, 17575, 222497, 3188806, 50988405, 899222457, 17329515172, 362164300173, 8155216185781, 196789115887252, 5064722539020379, 138457553073641465, 4006059432756066914, 122284085809137076203, 3926775294104305483621, 132313462760902116605534
Offset: 0

Views

Author

Thomas Wieder and N. J. A. Sloane, Oct 06 2002

Keywords

Comments

If all individuals form a single society ("uniparate society"), then the number of different hierarchies for that single society is equal to the ordered Bell number Bell_ordered(n) (A000670).
Represent a labeled pre-order (quasi-order, topology, A000798) as a directed graph. a(n) is the number of such digraphs in which the underlying graph of each component is complete. a(3)=23 because there are 29 such digraphs but o->o<-o and o<-o->o are not counted. Each has 3 labelings. 29 - 6 = 23. - Geoffrey Critzer, Jul 30 2014

Examples

			a(3) = 23: Let the n = 3 individuals be named 1, 2 and 3. Let a pair of parentheses () indicate a society and let square brackets [] denote a set of disparate societies. Finally, let the ranks be ordered from left to right and separated by a colon, e.g., (1,2:3) is a society with individual 3 on top and individuals 1 and 2 on the same bottom rank.
Then the hierarchical ordering for n = 3 is composed of the following sets: [(1),(2),(3)], [(1,2)(3)], [(3,2)(1)], [(3,1)(2)], [(1:2)(3)], [(3:2)(1)], [(1:3)(2)], [(2:1)(3)], [(2:3)(1)], [(3:1)(2)], [(3:2:1)], [(1:3:2)], [(2:1:3)], [(1:2:3)], [(3:1:2)], [(2:3:1)], [(1,3:2)], [(3,2:1)], [(2,1:3)], [(3:1,2)], [(1:2,3)], [(2:3,1)], [(1,2,3)].
		

Crossrefs

Cf. A000670, A075744. See A075900 for the unlabeled case.

Programs

  • Maple
    A075729 := n->n!*exp(1/4/ln(2)-3/4)/2/sqrt(Pi)/(2*ln(2))^(1/4)*exp(-n*ln(ln(2)))*exp(sqrt(2*n/ln(2)))*n^(-3/4);
    with(combstruct); SetSeqSetL := [T, {T=Set(S), S=Sequence(U,card >= 1), U=Set(Z,card >=1)},labeled]; seq(count(SetSeqSetL,size=j),j=1..12);
    # alternative Maple program:
    b:= proc(n) option remember: `if`(n<2, 1,
          (2*n-1)*b(n-1) -(n-1)*(n-2)*b(n-2))
        end:
    a:= n-> add(b(k)*Stirling2(n,k), k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, May 22 2018
  • Mathematica
    Range[0, 20]!CoefficientList[Series[E^(1/(2 - E^x) - 1), {x, 0, 20}], x] (* Robert G. Wilson v, Jul 13 2004 *)
    Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Fubini[0, 1] = 1; a[0] = 1; a[n_] := a[n] = (n-1)! Sum[a[n-k] Fubini[k, 1]/((n-k)! (k-1)!), {k, 1, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 31 2016 *)
    Table[Sum[BellY[n, k, PolyLog[-Range[n], 1/2]/2], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
    With[{nn=20},CoefficientList[Series[Exp[1/(2-Exp[x])-1],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 26 2022 *)
  • Maxima
    a(n):= sum(sum(stirling2(n,k)*k!*binomial(k-1,m-1), k,m,n)/m!, m,1,n) /* Vladimir Kruchinin, Aug 10 2010 */

Formula

E.g.f.: exp(f(x)-1) where f(x) = 1/(2-exp(x)) = e.g.f. for A000670.
STIRLINGi transform of A000262.
a(n) = (n-1)! * Sum_k=1^n a(n-k)*b(k)/((n-k)!*(k-1)!); a(n) = a(n) + C(n-1, k-1)*a(n-k)*b(k) (where b(n) = A000670(n)). - Thomas Wieder, Dec 31 2002
a(n) = (Sum_{j=1..n} m(j))*(n!*Product_{j=1..n} B(j)^m(j))/(Product_{j=1..n} (m(j))!*(j!)^m(j)), where the sum is over all (m(1),m(2),...,m(n)) such that Sum_{j=1..n} (j*m(j)) = n. - Thomas Wieder, May 18 2003
a(n) is asymptotic to exp(1/(4*log(2))-3/4) /(2*sqrt(Pi*sqrt(2*log(2)))) *n!*exp(-log(log(2))*n)*exp(sqrt(2*n /log(2))) /n^(3/4). Calculated using the Maple package "algolib", using the command "equivalent(exp(1/(2-exp(x))-1), x, n);". - Thomas Wieder, Nov 12 2002
a(n) = Sum_{k=0..n} A079641(n,k)*A000110(k). - Vladeta Jovovic, Sep 25 2006
a(n) = sum(sum(stirling2(n,k)*k!*C(k-1,m-1), k=m..n)/m!, m=1..n). - Vladimir Kruchinin, Aug 10 2010

A129062 T(n, k) = [x^k] Sum_{k=0..n} Stirling2(n, k)*RisingFactorial(x, k), triangle read by rows, for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 6, 1, 0, 26, 36, 12, 1, 0, 150, 250, 120, 20, 1, 0, 1082, 2040, 1230, 300, 30, 1, 0, 9366, 19334, 13650, 4270, 630, 42, 1, 0, 94586, 209580, 166376, 62160, 11900, 1176, 56, 1, 0, 1091670, 2562354, 2229444, 952728, 220500, 28476, 2016, 72, 1
Offset: 0

Views

Author

Wolfdieter Lang, May 04 2007

Keywords

Comments

Matrix product of Stirling2 with unsigned Stirling1 triangle.
For the subtriangle without column no. m=0 and row no. n=0 see A079641.
The reversed matrix product |S1|. S2 is given in A111596.
As a product of lower triangular Jabotinsky matrices this is a lower triangular Jabotinsky matrix. See the D. E. Knuth references given in A039692 for Jabotinsky type matrices.
E.g.f. for row polynomials P(n,x):=sum(a(n,m)*x^m,m=0..n) is 1/(2-exp(z))^x. See the e.g.f. for the columns given below.
A048993*A132393 as infinite lower triangular matrices. - Philippe Deléham, Nov 01 2009
Triangle T(n,k), read by rows, given by (0,2,1,4,2,6,3,8,4,10,5,...) DELTA (1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 19 2011.
Also the Bell transform of A000629. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

Examples

			Triangle begins:
  1;
  0,    1;
  0,    2,    1;
  0,    6,    6,    1;
  0,   26,   36,   12,   1;
  0,  150,  250,  120,  20,  1;
  0, 1082, 2040, 1230, 300, 30,  1;
		

Crossrefs

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> polylog(-n,1/2), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    rows = 9;
    t = Table[PolyLog[-n, 1/2], {n, 0, rows}]; T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
    p[n_] := Sum[StirlingS2[n, k] Pochhammer[x, k], {k, 0, n}];
    Table[CoefficientList[FunctionExpand[p[n]], x], {n, 0, 9}] // Flatten (* Peter Luschny, Jun 27 2019 *)
  • Sage
    def a_row(n):
        s = sum(stirling_number2(n,k)*rising_factorial(x,k) for k in (0..n))
        return expand(s).list()
    [a_row(n) for n in (0..9)] # Peter Luschny, Jun 28 2019

Formula

a(n,m) = Sum_{k=m..n} S2(n,k) * |S1(k,m)|, n>=0; S2=A048993, S1=A048994.
E.g.f. of column k (with leading zeros): (f(x)^k)/k! with f(x):= -log(1-(exp(x)-1)) = -log(2-exp(x)).
Sum_{0<=k<=n} T(n,k)*x^k = A153881(n+1), A000007(n), A000670(n), A005649(n) for x = -1,0,1,2 respectively. - Philippe Deléham, Nov 19 2011

Extensions

New name by Peter Luschny, Jun 27 2019

A209849 Triangle read by rows: coefficients of polynomials in Sum_{k = 0..t} k^n * binomial(t,k).

Original entry on oeis.org

1, 1, 1, 0, 3, 1, -2, 3, 6, 1, 0, -10, 15, 10, 1, 16, -30, -15, 45, 15, 1, 0, 112, -210, 35, 105, 21, 1, -272, 588, 28, -735, 280, 210, 28, 1, 0, -2448, 5292, -2436, -1575, 1008, 378, 36, 1, 7936, -18960, 4140, 20160, -14595, -1575, 2730, 630, 45, 1
Offset: 1

Views

Author

Peter Bala, Mar 15 2012

Keywords

Comments

Repeatedly applying the operator x*d/dx to (1 + x)^t (t a nonnegative integer) and evaluating at x = 1 yields Sum_{k = 0..t} k^n*binomial(t,k) = R(n,t)*2^(t-n), where R(n,t) is a polynomial in t for n = 1,2,.... The polynomial sequence {R(n,t)}_{n>=0} is of binomial type. The first few values are given in the example section below.
This triangle lists the coefficients of these polynomials in ascending powers of t (omitting R(0,t) = 1). A closely related triangle is A102573, which lists the coefficients of the polynomials R(n,t) after factors of t and t*(1 + t) have been removed.
This is the case m = 2 of a family of binomial type polynomials satisfying the recurrence R(n+1,t) = t*(m*(R(n,t) - R(n,t-1)) + R(n,t-1)) with R(0,t) = 1. Case m = 0 gives the falling factorials (A008275); Case m = -1 gives a signed version of A079641.

Examples

			Repeatedly applying the operator x*d/dx to (1 + x)^n and evaluating the result at x = 1 yields
Sum_{k = 0..n} k   * binomial(n,k) =  n                * 2^(n-1).
Sum_{k = 0..n} k^2 * binomial(n,k) = (n +   n^2)       * 2^(n-2).
Sum_{k = 0..n} k^3 * binomial(n,k) = (    3*n^2 + n^3) * 2^(n-3).
Triangle begins:
  n\k|    1     2     3     4     5     6     7     8
  = = = = = = = = = = = = = = = = = = = = = = = = = =
  1  |    1
  2  |    1     1
  3  |    0     3     1
  4  |   -2     3     6     1
  5  |    0   -10    15    10     1
  6  |   16   -30   -15    45    15     1
  7  |    0   112  -210    35   105    21     1
  8  | -272   588    28  -735   280   210    28     1
  ...
		

Crossrefs

Columns k=1..3 give A155585(n-1), A383165, A383166.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    g := n -> 2^n*euler(n,1): BellMatrix(g, 9); # Peter Luschny, Jan 21 2016
  • Mathematica
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    M = BellMatrix[2^# EulerE[#, 1]&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
  • PARI
    T(n, k) = sum(j=k, n, 2^(n-j)*stirling(n, j, 2)*stirling(j, k, 1)); \\ Seiichi Manyama, Apr 16 2025
  • Sage
    # uses[bell_matrix from A264428]
    g = lambda n: sum((-2)^(n-k)*factorial(k)*stirling_number2(n,k) for k in (0..n))
    bell_matrix(g, 9) # Peter Luschny, Jan 21 2016
    
  • Sage
    def a_row(n):
        s = sum(2^(n-k)*stirling_number2(n, k)*falling_factorial(x, k) for k in (0..n))
        return expand(s).list()[1:]
    for n in (1..10): print(a_row(n)) # Seiichi Manyama, Apr 16 2025
    

Formula

T(n,k) = Sum_{j = 0..n} (-1)^(n+k) * (-2)^(n-j) * Stirling2(n,j) * |Stirling1(j,k)|. [corrected by Seiichi Manyama, Apr 16 2025]
E.g.f.: F(x,t) := (1/2 + 1/2*exp(2*x))^t = (1 + tanh(-x))^(-t) = 1 + t*x + (t+t^2)*x^2/2! + (3*t^2+t^3)*x^3/3! + ... satisfies the delay differential equation d/dx(F(x,t)) = 2*F(x,t) - F(x,t-1).
Recurrence for row polynomials R(n,t): R(n+1,t) = t*(2*R(n,t) - R(n,t-1)) with R(0,t) = 1.
Let D be the backward difference operator D(f(x)) = f(x) - f(x-1). Then (x*D)^n(2^x) = 2^(x-n)*R(n,x). Cf. A079641.
Discrete Dobinski-type relation: R(n,x) = 1/2^x*Sum_{k = 0..inf} (2*k)^n*x*(x - 1)*...*(x - k + 1)/k!, valid for x = 0,1,2,.... and n >= 1.
Other Dobinski-type relations: exp(-x)*Sum_{k = 0..inf} R(n,k)*x^k/k! = n-th row polynomial of A075497.
exp(-x)*Sum_{k = 0..inf} R(n,k+1)*x^k/k! = n-th row polynomial of A154602.
i^(-n)*exp(i*x)*Sum_{k = 0..inf} R(n,-k)*(-i*x)^k/k! = n-th row polynomial of A059419 where i = sqrt(-1).
Writing x^[n] in place of R(n,x) we have the analog of the Bernoulli summation formula for powers of integers: Sum_{k = 1..n-1} k^[p] = 1/(p + 1)*Sum_{k = 0..p} 2^k*binomial(p+1,k)*B_k*n^[p+1-k], where B_k = [1,-1/2,1/6,0,-1/30,...] is the sequence of Bernoulli numbers.
n-th row sum R(n,1) equals 2^(n-1). Alternating row sums R(n,-1) starting [-1,0,2,0,-16,0,272,...] are signed tangent numbers - see A009006 and A155585.
R(n+1,2) = 2^n + 4^n = A063376(n).
Triangle as a product of lower triangular arrays equals A075497*A008275.
The triangle of connection constants between the polynomials (x + 1)^[n] and x^[n] appears to be A119468 = (P^2 + 1)/2, where P denotes Pascal's triangle.
Also the Bell transform of the sequence 2^n*E(n,1), E(n,x) the Euler polynomials (A155585). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 21 2016
From Peter Bala, Jun 26 2016: (Start)
With row and column numbering starting at 0:
E.g.f. is exp(x)/cosh(x)*((1 + exp(2*x))/2)^t = 1 + (1 + t)*x + (3*t + t^2)*x^2/2! + (-2 + 3*t + 6*t^2 + t^3)*x^3/3! + ....
Exponential Riordan array [d/dx(f(x)), f(x)] belonging to the Derivative subgroup of the Riordan group, where f(x) = log((1 + exp(2*x))/2) and df/dx = exp(x)/cosh(x) is the e.g.f. for A155585. (End)
T(n,k) = [x^k] Sum_{k=0..n} 2^(n-k) * Stirling2(n,k) * FallingFactorial(x,k). - Seiichi Manyama, Apr 16 2025
E.g.f. of column k (with leading zeros): f(x)^k / k! with f(x) = log(1 + (exp(2*x) - 1)/2). - Seiichi Manyama, Apr 18 2025

A195204 Triangle of coefficients of a sequence of binomial type polynomials.

Original entry on oeis.org

2, 2, 4, 6, 12, 8, 26, 60, 48, 16, 150, 380, 360, 160, 32, 1082, 2940, 3120, 1680, 480, 64, 9366, 26908, 31080, 19040, 6720, 1344, 128, 94586, 284508, 351344, 236880, 96320, 24192, 3584, 256
Offset: 1

Views

Author

Peter Bala, Sep 13 2011

Keywords

Comments

Define a polynomial sequence P_n(x) by means of the recursion
P_(n+1)(x) = x*(P_n(x)+ P_n(x+1)), with P_0(x) = 1.
The first few polynomials are
P_1(x) = 2*x, P_2(x) = 2*x*(2*x + 1),
P_3(x) = 2*x*(4*x^2 + 6*x + 3), P_4(x) = 2*x*(8*x^3+24*x^2+30*x+13).
The present table shows the coefficients of these polynomials (excluding P_0(x)) in ascending powers of x. The P_n(x) are a polynomial sequence of binomial type. In particular, if we denote P_n(x) by x^[n] then we have the analog of the binomial expansion
(x+y)^[n] = Sum_{k = 0..n} binomial(n,k)*x^[n-k]*y^[k].
There are further analogies between the x^[n] and the monomials x^n.
1) Dobinski-type formula
exp(-x)*Sum_{k >= 0} (-k)^[n]*x^k/k! = (-1)^n*Bell(n,2*x),
where the Bell (or exponential) polynomials are defined as
Bell(n,x) := Sum_{k = 1..n} Stirling2(n,k)*x^k.
Equivalently, the connection constants associated with the polynomial sequences {x^[n]} and {x^n} are (up to signs) the same as the connection constants associated with the polynomial sequences {Bell(n,2*x)} and {Bell(n,x)}. For example, the list of coefficients of x^[4] is [26,60,48,16] and a calculation gives
Bell(4,2*x) = -26*Bell(1,x) + 60*Bell(2,x) - 48*Bell(3,x) + 16*Bell(4,x).
2) Analog of Bernoulli's summation formula
Bernoulli's formula for the sum of the p-th powers of the first n positive integers is
Sum_{k = 1..n} k^p = (1/(p+1))*Sum_{k = 0..p} (-1)^k * binomial(p+1,k)*B_k*n^(p+1-k), where B_k = [1,-1/2,1/6,0,-1/30,...] is the sequence of Bernoulli numbers.
This generalizes to
2*Sum_{k = 1..n} k^[p] = 1/(p+1)*Sum_{k = 0..p} (-1)^k * binomial(p+1,k)*B_k*n^[p+1-k].
The polynomials P_n(x) belong to a family of polynomial sequences P_n(x,t) of binomial type, dependent on a parameter t, and defined recursively by P_(n+1)(x,t)= x*(P_n(x,t)+ t*P_n(x+1,t)), with P_0(x,t) = 1. When t = 0 we have P_n(x,0) = x^n, the monomial polynomials. The present table is the case t = 1. The case t = -2 is (up to signs) A079641. See also A195205 (case t = 2).
Triangle T(n,k) (1 <= k <= n), read by rows, given by (0, 1, 2, 2, 4, 3, 6, 4, 8, 5, 10, ...) DELTA (2, 0, 2, 0, 2, 0, 2, 0, 2, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 22 2011
T(n,k) is the number of binary relations R on [n] with index = 1 containing exactly k strongly connected components (SCC's) and satisfying the condition that if (x,y) is in R then x and y are in the same SCC. - Geoffrey Critzer, Jan 17 2024

Examples

			Triangle begins
n\k|....1......2......3......4......5......6......7
===================================================
..1|....2
..2|....2......4
..3|....6.....12......8
..4|...26.....60.....48.....16
..5|..150....380....360....160.....32
..6|.1082...2940...3120...1680....480.....64
..7|.9366..26908..31080..19040...6720...1344....128
...
Relation with rising factorials for row 4:
x^[4] = 16*x^4+48*x^3+60*x^2+26*x = 2^4*x*(x+1)*(x+2)*(x+3)-6*2^3*x*(x+1)*(x+2)+7*2^2*x*(x+1)-2*x, where [1,7,6,1] is the fourth row of the triangle of Stirling numbers of the second kind A008277.
Generalized Dobinski formula for row 4:
exp(-x)*Sum_{k >= 1} (-k)^[4]*x^k/k! = exp(-x)*Sum_{k >= 1} (16*k^4-48*k^3+60*k^2-26*k)*x^k/k! = 16*x^4+48*x^3+28*x^2+2*x = Bell(4,2*x).
Example of generalized Bernoulli summation formula:
2*(1^[2]+2^[2]+...+n^[2]) = 1/3*(B_0*n^[3]-3*B_1*n^[2]+3*B_2*n^[1]) =
n*(n+1)*(4*n+5)/3, where B_0 = 1, B_1 = -1/2, B_2 = 1/6 are Bernoulli numbers.
From _Philippe Deléham_, Dec 22 2011: (Start)
Triangle (0, 1, 2, 2, 4, 3, 6, ...) DELTA (2, 0, 2, 0, 2, ...) begins:
  1;
  0,    2;
  0,    2,     4;
  0,    6,    12,     8;
  0,   26,    60,    48,    16;
  0,  150,   380,   360,   160,   32;
  0, 1082,  2940,  3120,  1680,  480,   64;
  0, 9366, 26908, 31080, 19040, 6720, 1344, 128;
  ... (End)
		

Crossrefs

Cf. A000629 (row sums), A000670 (one half row sums), A014307 (row polys. at x = 1/2), A079641, A195205, A209849.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> (-1)^(n+1)*polylog(-n, 2), 10); # Peter Luschny, Jan 29 2016
  • Mathematica
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    M = BellMatrix[(-1)^(#+1) PolyLog[-#, 2]&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)

Formula

E.g.f.: F(x,z) := (exp(z)/(2-exp(z)))^x = Sum_{n>=0} P_n(x)*z^n/n!
= 1 + 2*x*z + (2*x+4*x^2)*z^2/2! + (6*x+12*x^2+8*x^3)*z^3/3! + ....
The generating function F(x,z) satisfies the partial differential equation d/dz(F(x,z)) = x*F(x,z) + x*F(x+1,z) and hence the row polynomials P_n(x) satisfy the recurrence relation
P_(n+1)(x)= x*(P_n(x) + P_n(x+1)), with P_0(x) = 1.
In what follows we change notation and write x^[n] for P_n(x).
Relation with the factorial polynomials:
For n >= 1,
x^[n] = Sum_{k = 1..n} (-1)^(n-k)*Stirling2(n,k)*2^k*x^(k),
and its inverse formula
2^n*x^(n) = Sum_{k = 1..n} |Stirling1(n,k)|*x^[k],
where x^(n) denotes the rising factorial x*(x+1)*...*(x+n-1).
Relation with the Bell polynomials:
The alternating n-th row entries (-1)^(n+k)*T(n,k) are the connection coefficients expressing the polynomial Bell(n,2*x) as a linear combination of Bell(k,x), 1 <= k <= n.
The delta operator:
The sequence of row polynomials is of binomial type. If D denotes the derivative operator d/dx then the delta operator D* for this sequence of binomial type polynomials is given by
D* = D/2 - log(cosh(D/2)) = log(2*exp(D)/(exp(D)+1))
= (D/2) - (D/2)^2/2! + 2*(D/2)^4/4! - 16*(D/2)^6/6! + 272*(D/2)^8/8! - ...,
where [1,2,16,272,...] is the sequence of tangent numbers A000182.
D* is the lowering operator for the row polynomials
(D*)x^[n] = n*x^[n-1].
Associated Bernoulli polynomials:
Generalized Bernoulli polynomial GB(n,x) associated with the polynomials x^[n] may be defined by
GB(n,x) := ((D*)/(exp(D)-1))x^[n].
They satisfy the difference equation
GB(n,x+1) - GB(n,x) = n*x^[n-1]
and have the expansion
GB(n,x) = -(1/2)*n*x^[n-1] + (1/2)*Sum_{k = 0..n} binomial(n,k) * B_k * x^[n-k], where B_k denotes the ordinary Bernoulli numbers.
The first few polynomials are
GB(0,x) = 1/2, GB(1,x) = x-3/4, GB(2,x) = 2*x^2-2*x+1/12,
GB(3,x) = 4*x^3-3*x^2-x, GB(4,x) = 8*x^4-4*x^2-4*x-1/60.
It can be shown that
1/(n+1)*(d/dx)(GB(n+1,x)) = Sum_{i = 0..n} 1/(i+1) * Sum_{k = 0..i} (-1)^k *binomial(i,k)*(x+k)^[n].
This generalizes a well-known formula for Bernoulli polynomials.
Relations with other sequences:
Row sums: A000629(n) = 2*A000670(n). Column 1: 2*A000670(n-1). Row polynomials evaluated at x = 1/2: {P_n(1/2)}n>=0 = [1,1,2,7,35,226,...] = A014307.
T(n,k) = A184962(n,k)*2^k. - Philippe Deléham, Feb 17 2013
Also the Bell transform of A076726. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 29 2016
Conjecture: o.g.f. as a continued fraction of Stieltjes type: 1/(1 - 2*x*z/(1 - z/(1 - 2*(x + 1)*z/(1 - 2*z/(1 - 2*(x + 2)*z/(1 - 3*z/(1 - 2*(x + 3)*z/(1 - 4*z/(1 - ... ))))))))). - Peter Bala, Dec 12 2024

Extensions

a(1) added by Philippe Deléham, Dec 22 2011

A184962 Triangle T(n,k), read by rows, given by (0, 1, 2, 2, 4, 3, 6, 4, 8, 5, 10, ...) DELTA (1, 0, 1, 0, 1, 0, 1, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 3, 1, 0, 13, 15, 6, 1, 0, 75, 95, 45, 10, 1, 0, 541, 735, 390, 105, 15, 1, 0, 4683, 6727, 3885, 1190, 210, 21, 1, 0, 47293, 71127, 43918, 14805, 3010, 378, 28, 1, 0, 545835
Offset: 0

Views

Author

Philippe Deléham, Dec 22 2011

Keywords

Comments

The Bell transform of the Fubini numbers. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 29 2016

Examples

			Triangle begins :
1
0, 1
0, 1, 1
0, 3, 3, 1
0, 13, 15, 6, 1
0, 75, 95, 45, 10, 1
		

Crossrefs

Row sums are A014307(n).

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> (polylog(-n,1/2)+0^n)/2, 10); # Peter Luschny, Jan 29 2016
  • Mathematica
    (* The function BellMatrix is defined in A264428. *)
    bm = BellMatrix[(PolyLog[-#, 1/2] + Boole[n == 0])/2 &, 10]; Table[bm[[n, k]], {n, 1, Length[bm]}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 31 2016, after Peter Luschny *)

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^k = A000007(n), A014307(n), A000629(n) for x = 0, 1, 2 respectively.
Showing 1-7 of 7 results.