A129063
Third column (m=2) of triangle A129062 and second column of triangle A079641.
Original entry on oeis.org
1, 6, 36, 250, 2040, 19334, 209580, 2562354, 34915680, 524986462, 8636859924, 154357103498, 2978418173640, 61718786864310, 1367098836863868, 32236969655283682, 806313056758966320, 21322699350055313678, 594440128269066768612, 17424632249851351374906
Offset: 0
A129064
Fourth column (m=3) of triangle A129062 and third column of triangle A079641.
Original entry on oeis.org
1, 12, 120, 1230, 13650, 166376, 2229444, 32724810, 523531470, 9080409492, 169892449584, 3412891866566, 73300097535210, 1676670468061920, 40704197313912060, 1045464783485987298, 28328001168991093350
Offset: 0
A000587
Rao Uppuluri-Carpenter numbers (or complementary Bell numbers): e.g.f. = exp(1 - exp(x)).
Original entry on oeis.org
1, -1, 0, 1, 1, -2, -9, -9, 50, 267, 413, -2180, -17731, -50533, 110176, 1966797, 9938669, 8638718, -278475061, -2540956509, -9816860358, 27172288399, 725503033401, 5592543175252, 15823587507881, -168392610536153, -2848115497132448, -20819319685262839
Offset: 0
G.f. = 1 - x + x^3 + x^4 - 2*x^5 - 9*x^6 - 9*x^7 + 50*x^8 + 267*x^9 + 413*x^10 - ...
- N. A. Kolokolnikova, Relations between sums of certain special numbers (Russian), in Asymptotic and enumeration problems of combinatorial analysis, pp. 117-124, Krasnojarsk. Gos. Univ., Krasnoyarsk, 1976.
- Alfréd Rényi, Új modszerek es eredmenyek a kombinatorikus analfzisben. I. MTA III Oszt. Ivozl., Vol. 16 (1966), pp. 7-105.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. V. Subbarao and A. Verma, Some remarks on a product expansion. An unexplored partition function, in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics (Gainesville, FL, 1999), pp. 267-283, Kluwer, Dordrecht, 2001.
- Alois P. Heinz, Table of n, a(n) for n = 0..595 (first 101 terms from T. D. Noe)
- M. Aguiar and A. Lauve, The characteristic polynomial of the Adams operators on graded connected Hopf algebras, 2014. See Example 31. - _N. J. A. Sloane_, May 24 2014
- W. Asakly, A. Blecher, C. Brennan, A. Knopfmacher, T. Mansour, and S. Wagner, Set partition asymptotics and a conjecture of Gould and Quaintance, Journal of Mathematical Analysis and Applications, Volume 416, Issue 2 (15 August 2014), Pages 672-682.
- Tewodros Amdeberhan, Valerio de Angelis and Victor H. Moll, Complementary Bell numbers: arithmetical properties and Wilf's conjecture.
- S. Barbero, U. Cerruti, and N. Murru, A Generalization of the Binomial Interpolated Operator and its Action on Linear Recurrent Sequences, J. Int. Seq., Vol. 13 (2010), Article 10.9.7.
- R. E. Beard, On the Coefficients in the Expansion of e^(e^t) and e^(-e^t), J. Institute of Actuaries, Vol. 76 (1950), pp. 152-163. [Annotated scanned copy]
- Pascal Caron, Jean-Gabriel Luque, Ludovic Mignot, and Bruno Patrou, State complexity of catenation combined with a boolean operation: a unified approach, arXiv:1505.03474 [cs.FL], 2015.
- Valerio De Angelis and Dominic Marcello, Wilf's Conjecture, The American Mathematical Monthly, Vol. 123, No. 6 (2016), pp. 557-573.
- S. de Wannemacker, T. Laffey and R. Osburn, On a conjecture of Wilf, arXiv:math/0608085 [math.NT], 2006-2007.
- Branko Dragovich, On Summation of p-Adic Series, arXiv:1702.02569 [math.NT], 2017.
- Branko Dragovich, Andrei Yu. Khrennikov, and Natasa Z. Misic, Summation of p-Adic Functional Series in Integer Points, arXiv:1508.05079, 2015
- B. Dragovich and N. Z. Misic, p-Adic invariant summation of some p-adic functional series, P-Adic Numbers, Ultrametric Analysis, and Applications, Volume 6, Issue 4 (October 2014), pp. 275-283.
- Antal E. Fekete, Apropos Bell and Stirling Numbers, Crux Mathematicorum, Vol. 25, No. 5 (1999), pp. 274-281.
- B. Harris and L. Schoenfeld, Asymptotic expansions for the coefficients of analytic functions, Ill. J. Math., Vol. 12 (1968), pp. 264-277.
- M. Klazar, Counting even and odd partitions, Amer. Math. Monthly, Vol. 110, No. 6 (2003), pp. 527-532.
- M. Klazar, Bell numbers, their relatives and algebraic differential equations, J. Combin. Theory, A 102 (2003), 63-87.
- A. Knopfmacher and M. E. Mays, Graph compositions I: Basic enumerations, Integers, Vol. 1 (2001), Article A4. (See the first two columns of the table on p. 9.)
- Vaclav Kotesovec, Plot of |a(n)/n!|^(1/n) / |exp(1/W(-n))/W(-n)| for n = 1..40000, where W is the LambertW function.
- Peter J. Larcombe, Jack Sutton, and James Stanton, A note on the constant 1/e, Palest. J. Math. (2023) Vol. 12, No. 2, 609-619. See p. 617.
- J. W. Layman and C. L. Prather, Generalized Bell numbers and zeros of successive derivatives of an entire function, Journal of Mathematical Analysis and Applications, Volume 96, Issue 1 (15 October 1983), Pages 42-51.
- Toufik Mansour and Mark Shattuck, Counting subword patterns in permutations arising as flattened partitions of sets, Appl. Anal. Disc. Math. (2022), OnLine-First (00):9-9.
- T. Mansour, M. Shattuck and D. G. L. Wang, Recurrence relations for patterns of type (2, 1) in flattened permutations, arXiv preprint arXiv:1306.3355 [math.CO], 2013.
- S. Ramanujan, Notebook entry.
- V. R. Rao Uppuluri and J. A. Carpenter, Numbers generated by the function exp(1-e^x), Fib. Quart., Vol. 7, No. 4 (1969), pp. 437-448.
- Frank Ruskey and Jennifer Woodcock, The Rand and block distances of pairs of set partitions, Combinatorial algorithms, 287-299, Lecture Notes in Comput. Sci., 7056, Springer, Heidelberg, 2011.
- Frank Ruskey, Jennifer Woodcock and Yuji Yamauchi, Counting and computing the Rand and block distances of pairs of set partitions, Journal of Discrete Algorithms, Volume 16 (October 2012), Pages 236-248. [_N. J. A. Sloane_, Oct 03 2012]
- M. Z. Spivey, On Solutions to a General Combinatorial Recurrence, J. Int. Seq., Vol. 14 (2011), Article 11.9.7.
- D. Subedi, Complementary Bell Numbers and p-adic Series, J. Int. Seq., Vol. 17 (2014), Article 14.3.1.
- A. Vieru, Agoh's conjecture: its proof, its generalizations, its analogues, arXiv preprint arXiv:1107.2938 [math.NT], 2011.
- Eric Weisstein's World of Mathematics, Complementary Bell Number.
- D. Wuilquin, Letters to N. J. A. Sloane, August 1984.
- Yifan Yang, On a multiplicative partition function, Electron. J. Combin., Vol. 8, No. 1 (2001), Research Paper 19.
-
a000587 n = a000587_list !! n
a000587_list = 1 : f a007318_tabl [1] where
f (bs:bss) xs = y : f bss (y : xs) where y = - sum (zipWith (*) xs bs)
-- Reinhard Zumkeller, Mar 04 2014
-
b:= proc(n, t) option remember; `if`(n=0, 1-2*t,
add(b(n-j, 1-t)*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..35); # Alois P. Heinz, Jun 28 2016
-
Table[ -1 * Sum[ (-1)^( k + 1) StirlingS2[ n, k ], {k, 0, n} ], {n, 0, 40} ]
With[{nn=30},CoefficientList[Series[Exp[1-Exp[x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Nov 04 2011 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ 1 - Exp[x]], {x, 0, n}]]; (* Michael Somos, May 27 2014 *)
a[ n_] := If[ n < 0, 0, With[{m = n + 1}, SeriesCoefficient[ Series[ Nest[ x Factor[ 1 - # /. x -> x / (1 - x)] &, 0, m], {x, 0, m}], {x, 0, m}]]]; (* Michael Somos, May 27 2014 *)
Table[BellB[n, -1], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)
b[1] = 1; k = 1; Flatten[{1, Table[Do[j = k; k -= b[m]; b[m] = j;, {m, 1, n-1}]; b[n] = k; k*(-1)^n, {n, 1, 40}]}] (* Vaclav Kotesovec, Sep 09 2019 *)
-
{a(n) = if( n<0, 0, n! * polcoeff( exp( 1 - exp( x + x * O(x^n))), n))}; /* Michael Somos, Mar 14 2011 */
-
{a(n) = local(A); if( n<0, 0, n++; A = O(x); for( k=1, n, A = x - x * subst(A, x, x / (1 - x))); polcoeff( A, n))}; /* Michael Somos, Mar 14 2011 */
-
Vec(serlaplace(exp(1 - exp(x+O(x^99))))) /* Joerg Arndt, Apr 01 2011 */
-
a(n)=round(exp(1)*suminf(k=0,(-1)^k*k^n/k!))
vector(20,n,a(n-1)) \\ Derek Orr, Sep 19 2014 -- a direct approach
-
x='x+O('x^66); Vec(serlaplace(exp(1 - exp(x)))) \\ Michel Marcus, Sep 19 2014
-
# The objective of this implementation is efficiency.
# n -> [a(0), a(1), ..., a(n)] for n > 0.
def A000587_list(n):
A = [0 for i in range(n)]
A[n-1] = 1
R = [1]
for j in range(0, n):
A[n-1-j] = -A[n-1]
for k in range(n-j, n):
A[k] += A[k-1]
R.append(A[n-1])
return R
# Peter Luschny, Apr 18 2011
-
# Python 3.2 or higher required
from itertools import accumulate
A000587, blist, b = [1,-1], [1], -1
for _ in range(30):
blist = list(accumulate([b]+blist))
b = -blist[-1]
A000587.append(b) # Chai Wah Wu, Sep 19 2014
-
expnums(26, -1) # Zerinvary Lajos, May 15 2009
A209849
Triangle read by rows: coefficients of polynomials in Sum_{k = 0..t} k^n * binomial(t,k).
Original entry on oeis.org
1, 1, 1, 0, 3, 1, -2, 3, 6, 1, 0, -10, 15, 10, 1, 16, -30, -15, 45, 15, 1, 0, 112, -210, 35, 105, 21, 1, -272, 588, 28, -735, 280, 210, 28, 1, 0, -2448, 5292, -2436, -1575, 1008, 378, 36, 1, 7936, -18960, 4140, 20160, -14595, -1575, 2730, 630, 45, 1
Offset: 1
Repeatedly applying the operator x*d/dx to (1 + x)^n and evaluating the result at x = 1 yields
Sum_{k = 0..n} k * binomial(n,k) = n * 2^(n-1).
Sum_{k = 0..n} k^2 * binomial(n,k) = (n + n^2) * 2^(n-2).
Sum_{k = 0..n} k^3 * binomial(n,k) = ( 3*n^2 + n^3) * 2^(n-3).
Triangle begins:
n\k| 1 2 3 4 5 6 7 8
= = = = = = = = = = = = = = = = = = = = = = = = = =
1 | 1
2 | 1 1
3 | 0 3 1
4 | -2 3 6 1
5 | 0 -10 15 10 1
6 | 16 -30 -15 45 15 1
7 | 0 112 -210 35 105 21 1
8 | -272 588 28 -735 280 210 28 1
...
Cf.
A008275,
A009006 (alt. row sums),
A059419,
A063376,
A075497,
A079641,
A102573,
A119468,
A129062,
A154602,
A176668,
A195204,
A383140.
-
# The function BellMatrix is defined in A264428.
g := n -> 2^n*euler(n,1): BellMatrix(g, 9); # Peter Luschny, Jan 21 2016
-
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
M = BellMatrix[2^# EulerE[#, 1]&, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
-
T(n, k) = sum(j=k, n, 2^(n-j)*stirling(n, j, 2)*stirling(j, k, 1)); \\ Seiichi Manyama, Apr 16 2025
-
# uses[bell_matrix from A264428]
g = lambda n: sum((-2)^(n-k)*factorial(k)*stirling_number2(n,k) for k in (0..n))
bell_matrix(g, 9) # Peter Luschny, Jan 21 2016
-
def a_row(n):
s = sum(2^(n-k)*stirling_number2(n, k)*falling_factorial(x, k) for k in (0..n))
return expand(s).list()[1:]
for n in (1..10): print(a_row(n)) # Seiichi Manyama, Apr 16 2025
A079641
Matrix product of Stirling2-triangle A008277(n,k) and unsigned Stirling1-triangle |A008275(n,k)|.
Original entry on oeis.org
1, 2, 1, 6, 6, 1, 26, 36, 12, 1, 150, 250, 120, 20, 1, 1082, 2040, 1230, 300, 30, 1, 9366, 19334, 13650, 4270, 630, 42, 1, 94586, 209580, 166376, 62160, 11900, 1176, 56, 1, 1091670, 2562354, 2229444, 952728, 220500, 28476, 2016, 72, 1, 14174522
Offset: 1
Triangle begins:
1;
2,1;
6,6,1;
26,36,12,1;
150,250,120,20,1;
1082,2040,1230,300,30,1;
...
Triangle (0,2,1,4,2,6,3,8,4,...) DELTA (1,0,1,0,1,0,1,0,1,...) begins:
1
0, 1
0, 2, 1
0, 6, 6, 1
0, 26, 36, 12, 1
0, 150, 250, 120, 20, 1
0, 1082, 2040, 1230, 300, 30, 1. - _Philippe Deléham_, Dec 22 2011
- Nick Early, Canonical Bases for Permutohedral Plates, arXiv:1712.08520 [math.CO], 2017.
- Nick Early, Honeycomb tessellations and canonical bases for permutohedral blades, arXiv:1810.03246 [math.CO], 2018.
- D. E. Knuth, Convolution polynomials, arXiv:math/9207221 [math.CA], 1992; The Mathematica J., 2 (1992), 67-78.
-
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> add((-1)^(n-k)*2^k*k!*combinat:-stirling2(n, k), k=0..n), 9); # Peter Luschny, Jan 26 2016
-
rows = 10;
t = Table[Sum[(-1)^(n-k)*2^k*k!*StirlingS2[n, k], {k,0,n}], {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
A325872
T(n, k) = [x^k] Sum_{k=0..n} Stirling1(n, k)*FallingFactorial(x, k), triangle read by rows, for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, -2, 1, 0, 7, -6, 1, 0, -35, 40, -12, 1, 0, 228, -315, 130, -20, 1, 0, -1834, 2908, -1485, 320, -30, 1, 0, 17582, -30989, 18508, -5005, 665, -42, 1, 0, -195866, 375611, -253400, 81088, -13650, 1232, -56, 1, 0, 2487832, -5112570, 3805723, -1389612, 279048, -32130, 2100, -72, 1
Offset: 0
Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, -2, 1]
[3] [0, 7, -6, 1]
[4] [0, -35, 40, -12, 1]
[5] [0, 228, -315, 130, -20, 1]
[6] [0, -1834, 2908, -1485, 320, -30, 1]
[7] [0, 17582, -30989, 18508, -5005, 665, -42, 1]
[8] [0, -195866, 375611, -253400, 81088, -13650, 1232, -56, 1]
[9] [0, 2487832, -5112570, 3805723, -1389612, 279048, -32130, 2100, -72, 1]
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened).
- Gabriella Bretti, Pierpaolo Natalini and Paolo E. Ricci, A new set of Sheffer-Bell polynomials and logarithmic numbers, Georgian Mathematical Journal, Feb. 2019, page 8.
- Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
-
p[n_] := Sum[StirlingS1[n, k] FactorialPower[x, k] , {k, 0, n}];
Table[CoefficientList[FunctionExpand[p[n]], x], {n, 0, 9}] // Flatten
-
T(n, k) = sum(j=k, n, stirling(n, j, 1)*stirling(j, k, 1)); \\ Seiichi Manyama, Apr 18 2025
-
def a_row(n):
s = sum((-1)^(n-k)*stirling_number1(n,k)*falling_factorial(x,k) for k in (0..n))
return expand(s).list()
[a_row(n) for n in (0..9)]
A326477
Coefficients of polynomials related to ordered set partitions. Triangle read by rows, T_{m}(n, k) for m = 2 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 4, 3, 0, 46, 60, 15, 0, 1114, 1848, 840, 105, 0, 46246, 88770, 54180, 12600, 945, 0, 2933074, 6235548, 4574130, 1469160, 207900, 10395, 0, 263817646, 605964450, 505915410, 199849650, 39729690, 3783780, 135135
Offset: 0
Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 4, 3]
[3] [0, 46, 60, 15]
[4] [0, 1114, 1848, 840, 105]
[5] [0, 46246, 88770, 54180, 12600, 945]
[6] [0, 2933074, 6235548, 4574130, 1469160, 207900, 10395]
-
CL := f -> PolynomialTools:-CoefficientList(f, x):
FL := s -> ListTools:-Flatten(s, 1):
StirPochConv := proc(m, n) local P, L; P := proc(m, n) option remember;
`if`(n = 0, 1, add(binomial(m*n, m*k)*P(m, n-k)*x, k=1..n)) end:
L := CL(P(m, n)); CL(expand(add(L[k+1]*pochhammer(x,k)/k!, k=0..n))) end:
FL([seq(StirPochConv(2,n), n = 0..7)]);
-
P[, 0] = 1; P[m, n_] := P[m, n] = Sum[Binomial[m*n, m*k]*P[m, n-k]*x, {k, 1, n}] // Expand;
T[m_][n_] := CoefficientList[P[m, n], x].Table[Pochhammer[x, k]/k!, {k, 0, n}] // CoefficientList[#, x]&;
Table[T[2][n], {n, 0, 7}] // Flatten (* Jean-François Alcover, Jul 21 2019 *)
-
def StirPochConv(m, n):
z = var('z'); R = ZZ[x]
F = [i/m for i in (1..m-1)]
H = hypergeometric([], F, (z/m)^m)
P = R(factorial(m*n)*taylor(exp(x*(H-1)), z, 0, m*n + 1).coefficient(z, m*n))
L = P.list()
S = sum(L[k]*rising_factorial(x,k) for k in (0..n))
return expand(S).list()
for n in (0..6): print(StirPochConv(2, n))
A326585
Coefficients of polynomials related to ordered set partitions. Triangle read by rows, T_{m}(n, k) for m = 4 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 36, 35, 0, 12046, 17820, 5775, 0, 16674906, 30263480, 16216200, 2627625, 0, 65544211366, 135417565890, 93516348900, 26189163000, 2546168625, 0, 588586227465426, 1334168329550300, 1083314031995250, 402794176785000, 69571511509500, 4509264634875
Offset: 0
Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 36, 35]
[3] [0, 12046, 17820, 5775]
[4] [0, 16674906, 30263480, 16216200, 2627625]
[5] [0, 65544211366, 135417565890, 93516348900, 26189163000, 2546168625]
[6] [0, 588586227465426, 1334168329550300, 1083314031995250, 402794176785000, 69571511509500, 4509264634875]
A326587
Coefficients of polynomials related to ordered set partitions. Triangle read by rows, T_{m}(n, k) for m = 3 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 11, 10, 0, 645, 924, 280, 0, 111563, 197802, 101640, 15400, 0, 42567981, 86271640, 57717660, 15415400, 1401400, 0, 30342678923, 67630651098, 53492240256, 19158419280, 3144741600, 190590400
Offset: 0
Triangle starts:
0 [1]
1 [0, 1]
2 [0, 11, 10]
3 [0, 645, 924, 280]
4 [0, 111563, 197802, 101640, 15400]
5 [0, 42567981, 86271640, 57717660, 15415400, 1401400]
6 [0, 30342678923, 67630651098, 53492240256, 19158419280, 3144741600, 190590400]
A383140
Triangle read by rows: the coefficients of polynomials (1/3^(m-n)) * Sum_{k=0..m} k^n * 2^(m-k) * binomial(m,k) in the variable m.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 2, 6, 1, 0, -6, 20, 12, 1, 0, -30, 10, 80, 20, 1, 0, 42, -320, 270, 220, 30, 1, 0, 882, -1386, -770, 1470, 490, 42, 1, 0, 954, 7308, -15064, 2800, 5180, 952, 56, 1, 0, -39870, 101826, -39340, -61992, 29820, 14364, 1680, 72, 1, 0, -203958, -40680, 841770, -666820, -86940, 139440, 34020, 2760, 90, 1
Offset: 0
f_n(m) = (1/3^(m-n)) * Sum_{k=0..m} k^n * 2^(m-k) * binomial(m,k).
f_0(m) = 1.
f_1(m) = m.
f_2(m) = 2*m + m^2.
f_3(m) = 2*m + 6*m^2 + m^3.
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 2, 6, 1;
0, -6, 20, 12, 1;
0, -30, 10, 80, 20, 1;
0, 42, -320, 270, 220, 30, 1;
...
-
T(n, k) = sum(j=k, n, 3^(n-j)*stirling(n, j, 2)*stirling(j, k, 1));
-
def a_row(n):
s = sum(3^(n-k)*stirling_number2(n, k)*falling_factorial(x, k) for k in (0..n))
return expand(s).list()
for n in (0..10): print(a_row(n))
Showing 1-10 of 13 results.
Comments