cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A129062 T(n, k) = [x^k] Sum_{k=0..n} Stirling2(n, k)*RisingFactorial(x, k), triangle read by rows, for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 6, 1, 0, 26, 36, 12, 1, 0, 150, 250, 120, 20, 1, 0, 1082, 2040, 1230, 300, 30, 1, 0, 9366, 19334, 13650, 4270, 630, 42, 1, 0, 94586, 209580, 166376, 62160, 11900, 1176, 56, 1, 0, 1091670, 2562354, 2229444, 952728, 220500, 28476, 2016, 72, 1
Offset: 0

Views

Author

Wolfdieter Lang, May 04 2007

Keywords

Comments

Matrix product of Stirling2 with unsigned Stirling1 triangle.
For the subtriangle without column no. m=0 and row no. n=0 see A079641.
The reversed matrix product |S1|. S2 is given in A111596.
As a product of lower triangular Jabotinsky matrices this is a lower triangular Jabotinsky matrix. See the D. E. Knuth references given in A039692 for Jabotinsky type matrices.
E.g.f. for row polynomials P(n,x):=sum(a(n,m)*x^m,m=0..n) is 1/(2-exp(z))^x. See the e.g.f. for the columns given below.
A048993*A132393 as infinite lower triangular matrices. - Philippe Deléham, Nov 01 2009
Triangle T(n,k), read by rows, given by (0,2,1,4,2,6,3,8,4,10,5,...) DELTA (1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 19 2011.
Also the Bell transform of A000629. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

Examples

			Triangle begins:
  1;
  0,    1;
  0,    2,    1;
  0,    6,    6,    1;
  0,   26,   36,   12,   1;
  0,  150,  250,  120,  20,  1;
  0, 1082, 2040, 1230, 300, 30,  1;
		

Crossrefs

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> polylog(-n,1/2), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    rows = 9;
    t = Table[PolyLog[-n, 1/2], {n, 0, rows}]; T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
    p[n_] := Sum[StirlingS2[n, k] Pochhammer[x, k], {k, 0, n}];
    Table[CoefficientList[FunctionExpand[p[n]], x], {n, 0, 9}] // Flatten (* Peter Luschny, Jun 27 2019 *)
  • Sage
    def a_row(n):
        s = sum(stirling_number2(n,k)*rising_factorial(x,k) for k in (0..n))
        return expand(s).list()
    [a_row(n) for n in (0..9)] # Peter Luschny, Jun 28 2019

Formula

a(n,m) = Sum_{k=m..n} S2(n,k) * |S1(k,m)|, n>=0; S2=A048993, S1=A048994.
E.g.f. of column k (with leading zeros): (f(x)^k)/k! with f(x):= -log(1-(exp(x)-1)) = -log(2-exp(x)).
Sum_{0<=k<=n} T(n,k)*x^k = A153881(n+1), A000007(n), A000670(n), A005649(n) for x = -1,0,1,2 respectively. - Philippe Deléham, Nov 19 2011

Extensions

New name by Peter Luschny, Jun 27 2019

A180875 Sum_{j>=1} j^n*2^j/binomial(2*j,j) = r_n*Pi/2 + s_n with integer r_n and s_n; sequence gives s_n.

Original entry on oeis.org

1, 3, 11, 55, 355, 2807, 26259, 283623, 3473315, 47552791, 719718067, 11932268231, 215053088835, 4186305575415, 87534887434835, 1956680617267879, 46561960552921315, 1175204650272267479, 31357650670190565363, 881958890078887314567, 26078499305918584929155, 808742391638178302137783
Offset: 0

Views

Author

Jonathan Vos Post, Sep 23 2010

Keywords

Comments

In the references, the infinite series is S_n(2) = A014307(n+1)*Pi/2 + A180875(n) for n >= 1 (and S_0(2) is not defined). - Petros Hadjicostas, May 14 2020

Crossrefs

The values of r_n give A014307.

Programs

  • Maple
    f := n -> sum(j^n*(j!)^2*2^j/(2*j)!, j = 1..infinity):
    seq(f(n), n = 0..5); # gives
    # [1+(1/2)*Pi, 3+Pi, 11+(7/2)*Pi, 55+(35/2)*Pi, 355+113*Pi, 2807+(1787/2)*Pi].
  • Mathematica
    Table[Expand[FunctionExpand[FullSimplify[Sum[j^n*2^j/Binomial[2*j, j], {j, 1, Infinity}]]]][[1]], {n, 0, 20}] (* Vaclav Kotesovec, May 14 2020 *)
  • PARI
    N=20; x='x+O('x^N); f=sqrt(exp(x)/(2-exp(x))); Vec(serlaplace(deriv(f*intformal(f)))) \\ Seiichi Manyama, Oct 22 2019
    
  • Python
    # An alternative version of the sequence starts (for n >= 0):
    # 0, 1, 3, 11, ..., or in terms of the approximation: [(1/2)*Pi, 1+(1/2)*Pi,
    # 3+Pi, 11+(7/2)*Pi, ...]. Similar to the formula of Detlef Meya above, the
    # sequence then can be computed (without a special initial case) as:
    from functools import cache
    from math import comb as binomial
    @cache
    def a(n): return n + sum((binomial(n, j) - 1) * a(n - j) for j in range(1, n))
    print([a(n) for n in range(23)])  # Peter Luschny, Jun 09 2023

Formula

a(0)=1; if n>=1, then a(n) = a(n-1) + 1 + Sum_{m=1..n} binomial(n,m)*a(n-m). - Detlef Meya, Jan 22 2018
E.g.f.: 2*(arcsin(exp(x/2)/sqrt(2)) - Pi/4) * sqrt(exp(x)/(2-exp(x))^3) + exp(x)/(2-exp(x)). - Seiichi Manyama, Oct 21 2019
a(n) ~ Pi * n^(n+1) / (sqrt(2) * exp(n) * (log(2))^(n + 3/2)). - Vaclav Kotesovec, Oct 22 2019
E.g.f.: d/dx (f(x) * Integral f(x) dx), where f(x) = sqrt(exp(x)/(2-exp(x))), cf. A014307. - Seiichi Manyama, Oct 22 2019

Extensions

Attribution corrected by M. Lawrence Glasser, Sep 25 2010
Provided a better definition following a suggestion from Herb Conn. - N. J. A. Sloane, Feb 08 2011
Missing a(15) inserted by Seiichi Manyama, Oct 20 2019

A129064 Fourth column (m=3) of triangle A129062 and third column of triangle A079641.

Original entry on oeis.org

1, 12, 120, 1230, 13650, 166376, 2229444, 32724810, 523531470, 9080409492, 169892449584, 3412891866566, 73300097535210, 1676670468061920, 40704197313912060, 1045464783485987298, 28328001168991093350
Offset: 0

Views

Author

Wolfdieter Lang, May 04 2007

Keywords

Crossrefs

A129063, A000629 give m=2, m=1 columns.

Formula

a(n) = A129062(n+3,3), n>=0.
a(n) = A079641(n+2,2), n>=0.
E.g.f.: (d^3/dx^3)*((-log(2-exp(x)))^3)/3!.
Showing 1-3 of 3 results.