A014307
Expansion of the e.g.f. sqrt(exp(x) / (2 - exp(x))).
Original entry on oeis.org
1, 1, 2, 7, 35, 226, 1787, 16717, 180560, 2211181, 30273047, 458186752, 7596317885, 136907048461, 2665084902482, 55726440112987, 1245661569161135, 29642264728189066, 748158516941653967, 19962900431638852297, 561472467839585937560, 16602088291822017588121
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..424 (terms 0..100 from Vincenzo Librandi)
- Paul Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Toda Chain Equations, Journal of Integer Sequences, 17 (2014), #14.2.3.
- Harry Crane, Left-right arrangements, set partitions, and pattern avoidance, Australasian Journal of Combinatorics, 61(1) (2015), 57-72.
- D. Dominici, Nested derivatives: A simple method for computing series expansions of inverse functions, arXiv:math/0501052 [math.CA], 2005.
- F. J. Dyson, N. E. Frankel and M. L. Glasser, Lehmer's Interesting Series, arXiv:1009.4274 [math-ph], 2010-2011. (See Table IV on p. 14.)
- F. J. Dyson, N. E. Frankel and M. L. Glasser, Lehmer's interesting series, Amer. Math. Monthly, 120 (2013), 116-130. (See Table 2.)
- M. Klazar, Twelve countings with rooted plane trees, European Journal of Combinatorics 18 (1997), 195-210; Addendum, 18 (1997), 739-740.
- D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Monthly, 92(7) (1985), 449-457.
- Feng Qi and Mark Daniel Ward, Closed-form formulas and properties of coefficients in Maclaurin's series expansion of Wilf's function, arXiv:2110.08576 [math.CO], 2021.
- Q. Ren, Ordered partitions and drawings of rooted plane trees arXiv:1301.6327 [math.CO], 2013-2014.
- Andrew T. Wilson, Torus link homology and the nabla operator, arXiv preprint arXiv:1606.00764 [cond-mat.str-el], 2016.
-
Concatenation([1], List([1..20], n-> Sum([1..n], k-> Sum([k..n], m-> Stirling2(n,m)*Factorial(m)*Binomial(m-1,k-1)*Binomial(2*k-2,k-1)*(-2)^(1-k)/k )))); # G. C. Greubel, Oct 20 2019
-
m:=20; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( 1/Sqrt(2*Exp(-x)-1) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 30 2019
-
seq(coeff(series(1/sqrt(2*exp(-x)-1), x, n+1)*n!, x, n), n = 0..20); # G. C. Greubel, Oct 20 2019
a := n -> add((-1)^(n-k)*Stirling2(n,k)*doublefactorial(2*k-1), k=0..n):
seq(a(n), n = 0..21); # Peter Luschny, Oct 19 2021
-
a[n_] := Sum[ Sum[ StirlingS2[n, k]*k!*Binomial[k-1, m-1], {k, m, n}]/m*Binomial[2*m-2, m-1]*(-1)^(m-1)/2^(m-1), {m, 1, n}]; a[0]=1; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Sep 10 2012, after Vladimir Kruchinin *)
CoefficientList[Series[Sqrt[E^x/(2-E^x)], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 07 2014 *)
A014307 = ConstantArray[0,20]; A014307[[1]]=1; Do[A014307[[n+1]] = 1 + Sum[(-1+Binomial[n+1,j])*A014307[[j]],{j,1,n}],{n,1,19}]; Flatten[{1,A014307}] (* Vaclav Kotesovec after Jon Perry, Jan 07 2014 *)
-
a(n):=sum(sum(stirling2(n,k)*k!*binomial(k-1,m-1),k,m,n)/(m)* binomial(2*m-2,m-1)*(-1)^(m-1)/2^(m-1),m,1,n); /* Vladimir Kruchinin, May 10 2011 */
-
{a(n)=n!*polcoeff((exp(x +x*O(x^n))/(2-exp(x +x*O(x^n))))^(1/2),n)} \\ Paul D. Hanna, Jan 24 2008
-
/* As solution to integral equation: */ {a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=1+intformal(A^3*exp(-x+x*O(x^n))));n!*polcoeff(A,n)} \\ Paul D. Hanna, Jan 24 2008
-
m = 20; T = taylor(1/sqrt(2*exp(-x)-1), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Jun 30 2019
A129063
Third column (m=2) of triangle A129062 and second column of triangle A079641.
Original entry on oeis.org
1, 6, 36, 250, 2040, 19334, 209580, 2562354, 34915680, 524986462, 8636859924, 154357103498, 2978418173640, 61718786864310, 1367098836863868, 32236969655283682, 806313056758966320, 21322699350055313678, 594440128269066768612, 17424632249851351374906
Offset: 0
A181374
Let f(n) = Sum_{j>=1} j^n*3^j/binomial(2*j,j) = r_n*Pi/sqrt(3) + s_n; sequence gives s_n.
Original entry on oeis.org
3, 18, 156, 1890, 29496, 563094, 12709956, 331109658, 9777612432, 322738005150, 11775245575836, 470571509329506, 20441566147934568, 959052902557542246, 48330130399621041396, 2603558645653906065834, 149306059777139762896704, 9081311859252750219451182, 583927964165576868953730636
Offset: 0
- Vaclav Kotesovec, Table of n, a(n) for n = 0..200
- F. J. Dyson, N. E. Frankel and M. L. Glasser, Lehmer's Interesting Series, arXiv:1009.4274 [math-ph], 2010-2011.
- F. J. Dyson, N. E. Frankel and M. L. Glasser, Lehmer's interesting series, Amer. Math. Monthly, 120 (2013), 116-130.
- D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Monthly, 92(7) (1985), 449-457.
-
f[n_] := Sum[j^n*3^j/Binomial[2*j, j], {j, 1, Infinity}];
a[n_] := FindIntegerNullVector[{Pi/Sqrt[3], 1, N[-f[n], 20]}][[2]];
Table[s = a[n]; Print[s]; s, {n, 0, 8}] (* Jean-François Alcover, Sep 05 2018 *)
Table[Expand[FunctionExpand[FullSimplify[Sum[j^n*3^j/Binomial[2*j, j], {j, 1, Infinity}]]]][[1]], {n, 0, 20}] (* Vaclav Kotesovec, May 14 2020 *)
S[k_, z_] := Sum[n!*(z/(4 - z))^n* StirlingS2[k + 1, n]*(1/n + Sum[(-1)^p*Pochhammer[1/2, p]/(p + 1)!* Binomial[n - 1, p]*(4/z)^(p + 1)*(Sqrt[z/(4 - z)]*ArcSin[Sqrt[z]/2] - 1/2*Sum[Gamma[l]/Pochhammer[1/2, l]*(z/4)^l, {l, 1, p}]), {p, 0, n - 1}]), {n, 1, k + 2}]; Table[Expand[Simplify[S[j, 3]]][[1]], {j, 0, 20}] (* Vaclav Kotesovec, May 15 2020 *)
A181334
Let f(n) = Sum_{j>=1} j^n/binomial(2*j,j) = r_n*Pi*sqrt(3)/3^{t_n} + s_n/3; sequence gives r_n.
Original entry on oeis.org
2, 2, 10, 74, 238, 938, 13130, 23594, 1298462, 26637166, 201403930, 5005052234, 135226271914, 1315508114654, 13747435592810, 153590068548062, 202980764290906, 69141791857625242, 2766595825017102650, 38897014541363246798, 1724835471991750464238, 80219728936311383557694
Offset: 0
- Petros Hadjicostas, Table of n, a(n) for n = 0..101
- F. J. Dyson, N. E. Frankel and M. L. Glasser, Lehmer's Interesting Series, arXiv:1009.4274 [math-ph], 2010-2011.
- F. J. Dyson, N. E. Frankel and M. L. Glasser, Lehmer's interesting series, Amer. Math. Monthly, 120 (2013), 116-130.
- D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Monthly, 92(7) (1985), 449-457.
-
LehmerSer := n -> 2*add(add((-1)^p*(m!/((p+1)*3^(m+2)))*Stirling2(n+1,m)
*binomial(2*p, p)*binomial(m-1, p), p=0..m-1), m=1..n+1):
a := n -> numer(LehmerSer(n)): seq(a(n), n=0..21);
# (after Petros Hadjicostas) Peter Luschny, May 15 2020
-
f[n_] := Sum[j^n/Binomial[2*j, j], {j, 1, Infinity}];
a[n_] := Expand[ FunctionExpand[ f[n] ] ][[2, 1]] // Numerator;
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Nov 24 2017 *)
-
a(n)=numerator(2*sum(m=1, n+1, sum(p=0, m-1, (-1)^p*(m!/((p+1)*3^(m+2)))*stirling(n+1,m,2)*binomial(2*p,p)*binomial(m-1,p)))) \\ Petros Hadjicostas, May 15 2020
A185585
Let f(n) = Sum_{j>=1} j^n/binomial(2*j,j) = r_n*Pi*sqrt(3)/3^{t_n} + s_n/3; sequence gives t_n.
Original entry on oeis.org
3, 3, 4, 5, 5, 5, 6, 5, 7, 8, 8, 9, 10, 10, 10, 10, 8, 11, 12, 12, 13, 14, 14, 13, 15, 13, 16, 17, 17, 18, 19, 19, 19, 20, 19, 21, 22, 22, 23, 24, 24, 24, 24, 23, 24, 25, 25, 26, 27, 27, 26, 28, 26, 29, 30, 30, 31, 32
Offset: 0
- Petros Hadjicostas, Table of n, a(n) for n = 0..300
- F. J. Dyson, N. E. Frankel and M. L. Glasser, Lehmer's Interesting Series, arXiv:1009.4274 [math-ph], 2010-2011.
- F. J. Dyson, N. E. Frankel and M. L. Glasser, Lehmer's interesting series, Amer. Math. Monthly, 120 (2013), 116-130.
- D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Monthly, 92(7) (1985), 449-457.
-
# The function LehmerSer is defined in A181334.
a := n -> ilog[3](denom(LehmerSer(n))):
seq(a(n), n=0..57); # Peter Luschny, May 15 2020
-
f[n_] := Sum[j^n/Binomial[2*j, j], {j, 1, Infinity}];
a[n_] := 1 + Log[3, Denominator[Expand[FunctionExpand[f[n]]][[2, 1]]]];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 60}] (* Jean-François Alcover, Nov 24 2017 *)
-
a(n) = logint(denominator(2*sum(m=1, n+1, sum(p=0, m-1, (-1)^p*(m!/((p+1)*3^(m+2)))*stirling(n+1,m,2)*binomial(2*p,p)*binomial(m-1,p)))), 3) \\ Petros Hadjicostas, May 14 2020
A185672
Let f(n) = Sum_{j>=1} j^n*3^j/binomial(2*j,j) = r_n*Pi/sqrt(3) + s_n; sequence gives r_n.
Original entry on oeis.org
4, 20, 172, 2084, 32524, 620900, 14014732, 365100644, 10781360524, 355869575780, 12984066273292, 518879340911204, 22540052170064524, 1057507154836226660, 53291594817628483852, 2870834224548449841764, 164633490033421041392524, 10013579272685278891133540, 643872718978606529940390412
Offset: 0
- Vaclav Kotesovec, Table of n, a(n) for n = 0..200
- F. J. Dyson, N. E. Frankel and M. L. Glasser, Lehmer's Interesting Series, arXiv:1009.4274 [math-ph], 2010-2011.
- F. J. Dyson, N. E. Frankel and M. L. Glasser, Lehmer's interesting series, Amer. Math. Monthly, 120 (2013), 116-130.
- D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Monthly, 92(7) (1985), 449-457.
-
f[n_] := Sum[j^n*3^j/Binomial[2*j, j], {j, 1, Infinity}];
a[n_] := FindIntegerNullVector[{Pi/Sqrt[3], 1, N[-f[n], 20]}][[1]];
Table[r = a[n]; Print[r]; r, {n, 0, 8}] (* Jean-François Alcover, Sep 05 2018 *)
Table[Expand[FunctionExpand[FullSimplify[Sum[j^n*3^j/Binomial[2*j, j], {j, 1, Infinity}]]]][[2]] * Sqrt[3]/Pi, {n, 0, 20}] (* Vaclav Kotesovec, May 14 2020 *)
S[k_, z_] := Sum[n!*(z/(4 - z))^n* StirlingS2[k + 1, n]*(1/n + Sum[(-1)^p*Pochhammer[1/2, p]/(p + 1)!* Binomial[n - 1, p]*(4/z)^(p + 1)*(Sqrt[z/(4 - z)]*ArcSin[Sqrt[z]/2] - 1/2*Sum[Gamma[l]/Pochhammer[1/2, l]*(z/4)^l, {l, 1, p}]), {p, 0, n - 1}]), {n, 1, k + 2}]; Table[Expand[Simplify[S[j, 3]]][[2]]*Sqrt[3]/Pi, {j, 0, 20}] (* Vaclav Kotesovec, May 15 2020 *)
A259852
Numerators of the terms of Lehmer's series S_2(2), where S_k(x) = Sum_{n>=1} n^k*x^n/binomial(2*n, n).
Original entry on oeis.org
1, 8, 18, 128, 200, 192, 784, 8192, 10368, 25600, 30976, 147456, 173056, 401408, 10240, 8388608, 9469952, 7077888, 23658496, 20971520, 38535168, 253755392, 277348352, 268435456, 2621440000, 5670699008, 6115295232, 3758096384, 28219277312, 60397977600
Offset: 1
1/1, 8/3, 18/5, 128/35, 200/63, 192/77, 784/429, ... = A259852/A259853.
- F. J. Dyson, N. E. Frankel, and M. L. Glasser, Lehmer's Interesting Series, arXiv:1009.4274 [math-ph], 2010-2011.
- F. J. Dyson, N. E. Frankel, and M. L. Glasser, Lehmer's interesting series, Amer. Math. Monthly, 120 (2013), 116-130.
- D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Monthly, 92(7) (1985), 449-457.
-
Table[2^n*n^2/Binomial[2*n, n] // Numerator, {n, 1, 40}]
-
vector(40, n, numerator(n^2*2^n/binomial(2*n,n))) \\ Michel Marcus, Jul 07 2015
A259853
Denominators of the terms of Lehmer's series S_2(2), where S_k(x) = Sum_{n>=1} n^k*x^n/binomial(2*n, n).
Original entry on oeis.org
1, 3, 5, 35, 63, 77, 429, 6435, 12155, 46189, 88179, 676039, 1300075, 5014575, 215441, 300540195, 583401555, 756261275, 4418157975, 6892326441, 22427411435, 263012370465, 514589420475, 895766768975, 15801325804719, 61989816618513, 121683714103007
Offset: 1
1/1, 8/3, 18/5, 128/35, 200/63, 192/77, 784/429, ... = A259852/A259853.
- F. J. Dyson, N. E. Frankel, M. L. Glasser, Lehmer's Interesting Series, arXiv:1009.4274 [math-ph], 2010-2011.
- F. J. Dyson, N. E. Frankel, and M. L. Glasser, Lehmer's interesting series, Amer. Math. Monthly, 120 (2013), 116-130.
- D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Monthly, 92(7) (1985), 449-457.
-
Table[2^n*n^2/Binomial[2*n, n] // Denominator, {n, 1, 40}]
-
vector(40, n, denominator(n^2*2^n/binomial(2*n,n))) \\ Michel Marcus, Jul 07 2015
A382629
Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = (n-k)*T(n-1,k-1) + 2*(k+1)*T(n-1,k) + A102365(n,k) with T(n,k) = 0 if k < 0 or k > n.
Original entry on oeis.org
1, 3, 0, 7, 4, 0, 15, 35, 5, 0, 31, 203, 115, 6, 0, 63, 994, 1428, 315, 7, 0, 127, 4470, 13421, 7450, 783, 8, 0, 255, 19185, 108156, 121314, 32865, 1839, 9, 0, 511, 80161, 793704, 1593902, 870191, 130665, 4171, 10, 0, 1023, 329648, 5483093, 18269658, 17591035, 5383906, 485166, 9251, 11, 0
Offset: 0
Triangle begins:
1;
3, 0;
7, 4, 0;
15, 35, 5, 0;
31, 203, 115, 6, 0;
63, 994, 1428, 315, 7, 0;
127, 4470, 13421, 7450, 783, 8, 0;
255, 19185, 108156, 121314, 32865, 1839, 9, 0;
511, 80161, 793704, 1593902, 870191, 130665, 4171, 10, 0;
...
-
a102365(n, k) = if(k==0, 1, if(nn, 0, (n-k)*T(n-1, k-1)+2*(k+1)*T(n-1, k)+a102365(n, k));
Showing 1-9 of 9 results.
Comments