Original entry on oeis.org
1, 1, 6, 540, 1360800, 154314720000, 1154953090368000000, 786615912769073587200000000, 64289841661815089567953305600000000000, 803921077736369993656026249310037606400000000000000
Offset: 0
a(7), a(8) corrected and more terms from
Georg Fischer, May 10 2024
A156920
Triangle of the normalized A142963 and A156919 sequences.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 15, 18, 1, 1, 37, 129, 58, 1, 1, 83, 646, 877, 179, 1, 1, 177, 2685, 8030, 5280, 543, 1, 1, 367, 10002, 56285, 82610, 29658, 1636, 1, 1, 749, 34777, 335162, 919615, 756218, 159742, 4916, 1
Offset: 0
The first few rows of the triangle are:
[1]
[1, 1]
[1, 5, 1]
[1, 15, 18, 1]
[1, 37, 129, 58, 1]
[1, 83, 646, 877, 179, 1]
-
A156920 := proc(n,m): if n=m then 1; elif m=0 then 1 ; elif m<0 or m>n then 0; else (m+1)*procname(n-1, m)+(2*n-2*m+1)*procname(n-1, m-1) ; end if; end proc: seq(seq(A156920(n, m), m=0..n), n=0..8);
RHCnr:=5; RHCmax:=10; RHCend:=RHCnr+RHCmax: for k from RHCnr to RHCend do for n from 0 to k do S2[k,n]:=sum((-1)^(n+i)*binomial(n,i)*i^k/n!,i=0..n) end do: G(k,x):= sum(S2[k,p]*((2*p)!/p!) *x^p/(1-4*x)^(p+1),p=0..k)/(((-1)^(k+1)*2*x)/(-1+4*x)^(k+1)): fx:=simplify(G(k,x)): nmax:=degree(fx); RHC[k-RHCnr+1]:= coeff(fx,x,k-RHCnr)/2^(k-RHCnr) end do: a:=n-> RHC[n]: seq(a(n), n=1..RHCend-RHCnr);
LHCnr:=5; LHCmax:=10: LHCend:=LHCnr+LHCmax: for k from LHCnr to LHCend do for n from 0 to k do S2[k,n]:=sum((-1)^(n+i)*binomial(n,i)*i^k/n!,i=0..n) end do: G(k,x):= sum(S2[k,p]*((2*p)!/p!)*x^p/(1-4*x)^(p+1),p=0..k)/ (((-1)^(k+1)*2*x)/(-1+4*x)^(k+1)): fx:=simplify(G(k,x)): nmax:=degree(fx); for n from 0 to nmax do d[n]:= coeff(fx,x,n)/2^n end do: LHC[n]:=d[LHCnr-1] end do: a:=n-> LHC[n]: seq(a(n), n=LHCnr..LHCend-1);
-
T[, 0] = 1; T[n, n_] = 1; T[n_, m_] := T[n, m] = (m + 1)*T[n - 1, m] + (2*n - 2*m + 1)*T[n - 1, m - 1];
Table[T[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Nov 14 2017 *)
A180875
Sum_{j>=1} j^n*2^j/binomial(2*j,j) = r_n*Pi/2 + s_n with integer r_n and s_n; sequence gives s_n.
Original entry on oeis.org
1, 3, 11, 55, 355, 2807, 26259, 283623, 3473315, 47552791, 719718067, 11932268231, 215053088835, 4186305575415, 87534887434835, 1956680617267879, 46561960552921315, 1175204650272267479, 31357650670190565363, 881958890078887314567, 26078499305918584929155, 808742391638178302137783
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..423
- F. J. Dyson, N. E. Frankel and M. L. Glasser, Lehmer's Interesting Series, arXiv:1009.4274 [math-ph], 2010-2011; see Table IV on p. 14.
- F. J. Dyson, N. E. Frankel and M. L. Glasser, Lehmer's interesting series, Amer. Math. Monthly, 120 (2013), 116-130; see Table 2.
- D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Monthly, 92(7) (1985), 449-457.
- Feng Qi and Mark Daniel Ward, Closed-form formulas and properties of coefficients in Maclaurin's series expansion of Wilf's function, arXiv:2110.08576 [math.CO], 2021.
-
f := n -> sum(j^n*(j!)^2*2^j/(2*j)!, j = 1..infinity):
seq(f(n), n = 0..5); # gives
# [1+(1/2)*Pi, 3+Pi, 11+(7/2)*Pi, 55+(35/2)*Pi, 355+113*Pi, 2807+(1787/2)*Pi].
-
Table[Expand[FunctionExpand[FullSimplify[Sum[j^n*2^j/Binomial[2*j, j], {j, 1, Infinity}]]]][[1]], {n, 0, 20}] (* Vaclav Kotesovec, May 14 2020 *)
-
N=20; x='x+O('x^N); f=sqrt(exp(x)/(2-exp(x))); Vec(serlaplace(deriv(f*intformal(f)))) \\ Seiichi Manyama, Oct 22 2019
-
# An alternative version of the sequence starts (for n >= 0):
# 0, 1, 3, 11, ..., or in terms of the approximation: [(1/2)*Pi, 1+(1/2)*Pi,
# 3+Pi, 11+(7/2)*Pi, ...]. Similar to the formula of Detlef Meya above, the
# sequence then can be computed (without a special initial case) as:
from functools import cache
from math import comb as binomial
@cache
def a(n): return n + sum((binomial(n, j) - 1) * a(n - j) for j in range(1, n))
print([a(n) for n in range(23)]) # Peter Luschny, Jun 09 2023
A124212
Expansion of e.g.f. exp(x)/sqrt(2-exp(2*x)).
Original entry on oeis.org
1, 2, 8, 56, 560, 7232, 114368, 2139776, 46223360, 1132124672, 30999600128, 938366468096, 31114518056960, 1121542540992512, 43664751042265088, 1826043989622358016, 81635676596544143360
Offset: 0
-
N:= 60; # to get a(n) for n <= N
S:= series(exp(x)/sqrt(2-exp(2*x)), x, N+1):
seq(coeff(S,x,j), j=0..N); # Robert Israel, May 19 2014
-
CoefficientList[Series[E^x/Sqrt[2-E^(2*x)]-1, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 03 2013 *)
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=0,n,A=1+intformal(A+A^3)); n!*polcoeff(A,n)} \\ Paul D. Hanna, Oct 04 2008
A136728
E.g.f.: A(x) = (exp(x)/(4 - 3*exp(x)))^(1/4).
Original entry on oeis.org
1, 1, 4, 31, 349, 5146, 93799, 2036161, 51283894, 1470035101, 47250248569, 1683031711516, 65800765032589, 2801364476781781, 129003301751229364, 6389120632590635971, 338644807090096148809, 19126604338708282552186
Offset: 0
-
CoefficientList[Series[(E^x/(4-3*E^x))^(1/4), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 15 2013 *)
-
a(n)=n!*polcoeff((exp(x +x*O(x^n))/(4-3*exp(x +x*O(x^n))))^(1/4),n)
-
/* As solution to integral equation: */ a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=1+intformal(A^4*exp(-x+x*O(x^n))));n!*polcoeff(A,n)
A136729
E.g.f.: A(x) = [ exp(x)/(5 - 4*exp(x)) ]^(1/5).
Original entry on oeis.org
1, 1, 5, 49, 701, 13177, 306821, 8520289, 274808525, 10095533833, 416131518293, 19017974164465, 954399901374749, 52173428322993433, 3085965087129209381, 196360349627069553793, 13374490368820471936109, 970904530181260115741737
Offset: 0
-
CoefficientList[Series[(E^x/(5-4*E^x))^(1/5), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 22 2013 *)
-
a(n)=n!*polcoeff((exp(x +x*O(x^n))/(5-4*exp(x +x*O(x^n))))^(1/5),n)
-
/* As solution to integral equation: */ a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=1+intformal(A^6*exp(-x+x*O(x^n))));n!*polcoeff(A,n)
A136727
E.g.f.: A(x) = (exp(x)/(3 - 2*exp(x)))^(1/3).
Original entry on oeis.org
1, 1, 3, 17, 139, 1481, 19443, 303297, 5480219, 112549881, 2589274883, 65957355377, 1842897053099, 56038776055081, 1842278768795923, 65109900167188257, 2461735422517374779, 99148196540813749081
Offset: 0
E.g.f.: A(x) = 1 + x + 3/2*x^2 + 17/6*x^3 + 139/24*x^4 + 1481/120*x^5 +...
-
With[{nn=20},CoefficientList[Series[(Exp[x]/(3-2Exp[x]))^(1/3),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 26 2013 *)
-
{a(n) = n!*polcoeff((exp(x +x*O(x^n))/(3-2*exp(x +x*O(x^n))))^(1/3),n)}
for(n=0,25,print1(a(n),", "))
-
/* As solution to integral equation: */
{a(n) = local(A=1+x+x*O(x^n)); for(i=0,n, A = 1 + intformal(A^4*exp(-x+x*O(x^n)))); n!*polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
A345697
Expansion of the e.g.f. sqrt(1 / (2*exp(x) - 2*x*exp(x) - 1)).
Original entry on oeis.org
1, 0, 1, 2, 12, 64, 485, 4038, 39991, 441992, 5492322, 75171700, 1127989577, 18381446004, 323527186957, 6114296752718, 123513004310640, 2655648779976640, 60554669008300565, 1459559515622280282, 37079264125376670955, 990226180225789628660, 27733277682719819190246, 812818183963966524137332, 24880254143735238825011057
Offset: 0
sqrt(1/(2*exp(x)-2*x*exp(x)-1)) = 1 + x^2/2! + 2*x^3/3! + 12*x^4/4! + 64*x^5/5! + 485*x^6/6! + 4038*x^7/7! + 39991*x^8/8! + 441992*x^9/9! + ...
a(13) = Sum_{k=1..6} A014307(k)*A008306(13,k) = 18381446004.
A014307(1)*A008306(13,1) == -1 (mod 13), because A014307(1) = 1 and A008306(13,1) = (13-1)!
For k>=2, A008306(13,k) == 0 (mod 13), result a(13) == -1 (mod 13).
-
A014307 := proc(n) option remember; `if`(n=0, 1 , 1+add((-1+binomial(n, k))*A014307(k), k=1..n-1)) end:
A008306 := proc(n, k): if k=1 then (n-1)! ; elif n<=2*k-1 then 0; else (n-1)*procname(n-1, k)+(n-1)*procname(n-2, k-1) ; end if; end proc:
a := n-> add((A014307(k)*A008306(n,k)), k=1..floor(n/2)):a(0):=1 ;
seq(a(n), n=0..24);
# second program:
a := series(sqrt((1/(2*exp(x)-2*x*exp(x)-1))), x=0, 25):
seq(n!*coeff(a, x, n), n=0..24);
-
CoefficientList[Series[Sqrt[1/(2*E^x-2*x*E^x-1)], {x, 0, 24}], x] * Range[0, 24]!
-
my(x='x+O('x^25)); Vec(serlaplace(sqrt(1 / (2*exp(x) - 2*x*exp(x) -1)))) \\ Michel Marcus, Jun 24 2021
A360335
Array read by antidiagonals downwards: A(n,m) = number of set partitions of [2n] into 2-element subsets {i, i+k} with 1 <= k <= m.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 7, 5, 1, 1, 3, 12, 16, 8, 1, 1, 3, 15, 35, 38, 13, 1, 1, 3, 15, 63, 105, 89, 21, 1, 1, 3, 15, 90, 226, 329, 209, 34, 1, 1, 3, 15, 105, 417, 841, 1014, 491, 55, 1, 1, 3, 15, 105, 645, 1787, 3251, 3116, 1153, 89, 1
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 3, 3, 3, 3, 3, 3, ...
1, 3, 7, 12, 15, 15, 15, 15, 15, ...
1, 5, 16, 35, 63, 90, 105, 105, 105, ...
1, 8, 38, 105, 226, 417, 645, 840, 945, ...
1, 13, 89, 329, 841, 1787, 3348, 5445, 7665, ...
1, 21, 209, 1014, 3251, 7938, 16717, 31647, 53250, ...
1, 34, 491, 3116, 12483, 36500, 86311, 180560, 344403, ...
1, 55, 1153, 9610, 47481, 167631, 459803, 1062435, 2211181, ...
...
A102365
Triangle T(n,k), 0 <= k <= n, read by rows: given by [ 1, 0, 3, 0, 5, 0, 7, 0, 9, 0, ...] DELTA [ 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, ...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 5, 1, 0, 1, 18, 15, 1, 0, 1, 58, 129, 37, 1, 0, 1, 179, 877, 646, 83, 1, 0, 1, 543, 5280, 8030, 2685, 177, 1, 0, 1, 1636, 29658, 82610, 56285, 10002, 367, 1, 0, 1, 4916, 159742, 756218, 919615, 335162, 34777, 749, 1, 0
Offset: 0
Triangle begins:
1;
1, 0;
1, 1, 0;
1, 5, 1, 0;
1, 18, 15, 1, 0;
1, 58, 129, 37, 1, 0; ...
-
T[0, 0] := 1; T[n_, -1] := 0; T[n_, n_] := 0; T[n_, k_] := T[n, k] = (n - k)*T[n - 1, k - 1] + (2*k + 1)*T[n - 1, k]; Join[{1}, Table[If[k < 0, 0, If[k >= n, 0, T[n, k]]], {n, 1, 5}, {k, 0, n}] // Flatten] (* G. C. Greubel, Jun 30 2017 *)
Showing 1-10 of 26 results.
Comments