cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A121835 Hankel transform of A014307.

Original entry on oeis.org

1, 1, 6, 540, 1360800, 154314720000, 1154953090368000000, 786615912769073587200000000, 64289841661815089567953305600000000000, 803921077736369993656026249310037606400000000000000
Offset: 0

Views

Author

Philippe Deléham, Aug 28 2006

Keywords

Crossrefs

Formula

a(n) = A000178(n)*A057863(n).

Extensions

a(7), a(8) corrected and more terms from Georg Fischer, May 10 2024

A156920 Triangle of the normalized A142963 and A156919 sequences.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 15, 18, 1, 1, 37, 129, 58, 1, 1, 83, 646, 877, 179, 1, 1, 177, 2685, 8030, 5280, 543, 1, 1, 367, 10002, 56285, 82610, 29658, 1636, 1, 1, 749, 34777, 335162, 919615, 756218, 159742, 4916, 1
Offset: 0

Views

Author

Johannes W. Meijer, Feb 20 2009

Keywords

Comments

The originator sequences are A142963 and A156919.
The Flower Triangle seems to be an appropriate name for the triangular array of this sequence. The zero patterns of the Flower Polynomials of the first, see A156921, the second, see A156925, the third, see A156927, and the fourth kind, see A156933, look like flowers.
The first Maple program generates the Flower Triangle sequence.
The second program generates the Right Hand Columns sequences and the third one generates the Left Hand Column sequences. For an explanation of these two algorithms see A142963.

Examples

			The first few rows of the triangle are:
  [1]
  [1, 1]
  [1, 5, 1]
  [1, 15, 18, 1]
  [1, 37, 129, 58, 1]
  [1, 83, 646, 877, 179, 1]
		

Crossrefs

Originator sequences A142963, A156919.
Related sequences A156921, A156925, A156927, A156933.
Left hand column sequences A050488, A142965, A142966, A142968.
Right hand column sequences A000340, A156922, A156923, A156924.
Row sums A014307(n+1).

Programs

  • Maple
    A156920 := proc(n,m): if n=m then 1; elif m=0 then 1 ; elif m<0 or m>n then 0; else (m+1)*procname(n-1, m)+(2*n-2*m+1)*procname(n-1, m-1) ; end if; end proc: seq(seq(A156920(n, m), m=0..n), n=0..8);
    RHCnr:=5; RHCmax:=10; RHCend:=RHCnr+RHCmax: for k from RHCnr to RHCend do for n from 0 to k do S2[k,n]:=sum((-1)^(n+i)*binomial(n,i)*i^k/n!,i=0..n) end do: G(k,x):= sum(S2[k,p]*((2*p)!/p!) *x^p/(1-4*x)^(p+1),p=0..k)/(((-1)^(k+1)*2*x)/(-1+4*x)^(k+1)): fx:=simplify(G(k,x)): nmax:=degree(fx); RHC[k-RHCnr+1]:= coeff(fx,x,k-RHCnr)/2^(k-RHCnr) end do: a:=n-> RHC[n]: seq(a(n), n=1..RHCend-RHCnr);
    LHCnr:=5; LHCmax:=10: LHCend:=LHCnr+LHCmax: for k from LHCnr to LHCend do for n from 0 to k do S2[k,n]:=sum((-1)^(n+i)*binomial(n,i)*i^k/n!,i=0..n) end do: G(k,x):= sum(S2[k,p]*((2*p)!/p!)*x^p/(1-4*x)^(p+1),p=0..k)/ (((-1)^(k+1)*2*x)/(-1+4*x)^(k+1)): fx:=simplify(G(k,x)): nmax:=degree(fx); for n from 0 to nmax do d[n]:= coeff(fx,x,n)/2^n end do: LHC[n]:=d[LHCnr-1] end do: a:=n-> LHC[n]: seq(a(n), n=LHCnr..LHCend-1);
  • Mathematica
    T[, 0] = 1; T[n, n_] = 1; T[n_, m_] := T[n, m] = (m + 1)*T[n - 1, m] + (2*n - 2*m + 1)*T[n - 1, m - 1];
    Table[T[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Nov 14 2017 *)

Formula

T(n,m) = (m+1)*T(n-1,m) + (2*n-2*m+1)*T(n-1,m-1) with T(n,m=0) = 1 and T(n,n) = 1, n>=0 and 0 <= m <= n.
From Peter Bala, Jul 22 2012: (Start)
T(n,k) = 1/(2^(n-k))*A156919(n,k).
E.g.f.: 1 + t*x + (t+t^2)*x^2/2! + (t+5*t^2+t^3)*x^3/3! + ... = sqrt(E(x,2*t)), where E(x,t) = (1-t)*exp(x*t)/(exp(x*t)-t*exp(x)) = 1 + t*x + (t+t^2)*x^2/2! + (t+4*t^2+t^3)*x^3/3! + ... is the e.g.f. for the Eulerian numbers A008292.
The row polynomials R(n,x) satisfy 1/sqrt(1-2*x)*(x*d/dx)^n(1/sqrt(1-2*x)) = R(n,x)/(1-2*x)^(n+1). (End)

Extensions

Minor edits by Johannes W. Meijer, Sep 28 2011

A180875 Sum_{j>=1} j^n*2^j/binomial(2*j,j) = r_n*Pi/2 + s_n with integer r_n and s_n; sequence gives s_n.

Original entry on oeis.org

1, 3, 11, 55, 355, 2807, 26259, 283623, 3473315, 47552791, 719718067, 11932268231, 215053088835, 4186305575415, 87534887434835, 1956680617267879, 46561960552921315, 1175204650272267479, 31357650670190565363, 881958890078887314567, 26078499305918584929155, 808742391638178302137783
Offset: 0

Views

Author

Jonathan Vos Post, Sep 23 2010

Keywords

Comments

In the references, the infinite series is S_n(2) = A014307(n+1)*Pi/2 + A180875(n) for n >= 1 (and S_0(2) is not defined). - Petros Hadjicostas, May 14 2020

Crossrefs

The values of r_n give A014307.

Programs

  • Maple
    f := n -> sum(j^n*(j!)^2*2^j/(2*j)!, j = 1..infinity):
    seq(f(n), n = 0..5); # gives
    # [1+(1/2)*Pi, 3+Pi, 11+(7/2)*Pi, 55+(35/2)*Pi, 355+113*Pi, 2807+(1787/2)*Pi].
  • Mathematica
    Table[Expand[FunctionExpand[FullSimplify[Sum[j^n*2^j/Binomial[2*j, j], {j, 1, Infinity}]]]][[1]], {n, 0, 20}] (* Vaclav Kotesovec, May 14 2020 *)
  • PARI
    N=20; x='x+O('x^N); f=sqrt(exp(x)/(2-exp(x))); Vec(serlaplace(deriv(f*intformal(f)))) \\ Seiichi Manyama, Oct 22 2019
    
  • Python
    # An alternative version of the sequence starts (for n >= 0):
    # 0, 1, 3, 11, ..., or in terms of the approximation: [(1/2)*Pi, 1+(1/2)*Pi,
    # 3+Pi, 11+(7/2)*Pi, ...]. Similar to the formula of Detlef Meya above, the
    # sequence then can be computed (without a special initial case) as:
    from functools import cache
    from math import comb as binomial
    @cache
    def a(n): return n + sum((binomial(n, j) - 1) * a(n - j) for j in range(1, n))
    print([a(n) for n in range(23)])  # Peter Luschny, Jun 09 2023

Formula

a(0)=1; if n>=1, then a(n) = a(n-1) + 1 + Sum_{m=1..n} binomial(n,m)*a(n-m). - Detlef Meya, Jan 22 2018
E.g.f.: 2*(arcsin(exp(x/2)/sqrt(2)) - Pi/4) * sqrt(exp(x)/(2-exp(x))^3) + exp(x)/(2-exp(x)). - Seiichi Manyama, Oct 21 2019
a(n) ~ Pi * n^(n+1) / (sqrt(2) * exp(n) * (log(2))^(n + 3/2)). - Vaclav Kotesovec, Oct 22 2019
E.g.f.: d/dx (f(x) * Integral f(x) dx), where f(x) = sqrt(exp(x)/(2-exp(x))), cf. A014307. - Seiichi Manyama, Oct 22 2019

Extensions

Attribution corrected by M. Lawrence Glasser, Sep 25 2010
Provided a better definition following a suggestion from Herb Conn. - N. J. A. Sloane, Feb 08 2011
Missing a(15) inserted by Seiichi Manyama, Oct 20 2019

A124212 Expansion of e.g.f. exp(x)/sqrt(2-exp(2*x)).

Original entry on oeis.org

1, 2, 8, 56, 560, 7232, 114368, 2139776, 46223360, 1132124672, 30999600128, 938366468096, 31114518056960, 1121542540992512, 43664751042265088, 1826043989622358016, 81635676596544143360
Offset: 0

Views

Author

Karol A. Penson, Oct 19 2006

Keywords

Crossrefs

Programs

  • Maple
      N:= 60; # to get a(n) for n <= N
    S:= series(exp(x)/sqrt(2-exp(2*x)), x, N+1):
    seq(coeff(S,x,j), j=0..N); # Robert Israel, May 19 2014
  • Mathematica
    CoefficientList[Series[E^x/Sqrt[2-E^(2*x)]-1, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 03 2013 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=0,n,A=1+intformal(A+A^3)); n!*polcoeff(A,n)} \\ Paul D. Hanna, Oct 04 2008

Formula

E.g.f. satisfies: A'(x) = A(x) + A(x)^3 with A(0)=1. [From Paul D. Hanna, Oct 04 2008]
G.f.: 1/G(0) where G(k) = 1 - x*(4*k+2)/( 1 - 2*x*(k+1)/G(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Mar 23 2013
G.f.: 2/G(0), where G(k)= 1 + 1/(1 - x*(8*k+4)/(x*(8*k+4) - 1 + 4*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
a(n) ~ 2^(n+1/2)*n^n/(log(2)^(n+1/2)*exp(n)). - Vaclav Kotesovec, Jun 03 2013
From Peter Bala, Aug 30 2016: (Start)
a(n) = 1/sqrt(2) * Sum_{k >= 0} (1/8)^k*binomial(2*k,k)*(2*k + 1)^n = 1/sqrt(2) * Sum_{k >= 0} (-1/2)^k*binomial(-1/2,k)*(2*k + 1)^n. Cf. A176785, A124214 and A229558.
a(n) = Sum_{k = 0..n} (1/4)^k*binomial(2*k,k)*A145901(n,k).
a(n) = Sum_{k = 0..n} ( Sum_{i = 0..k} (-1)^(k-i)/4^k* binomial(2*k,k)*binomial(k,i)*(2*i + 1)^n ). (End)
a(n) = 2^n * A014307(n). - Seiichi Manyama, Nov 18 2023

Extensions

Definition corrected by Robert Israel, May 19 2014

A136728 E.g.f.: A(x) = (exp(x)/(4 - 3*exp(x)))^(1/4).

Original entry on oeis.org

1, 1, 4, 31, 349, 5146, 93799, 2036161, 51283894, 1470035101, 47250248569, 1683031711516, 65800765032589, 2801364476781781, 129003301751229364, 6389120632590635971, 338644807090096148809, 19126604338708282552186
Offset: 0

Views

Author

Paul D. Hanna, Jan 24 2008

Keywords

Crossrefs

Cf. A201354, variants: A014307, A136727, A136729.

Programs

  • Mathematica
    CoefficientList[Series[(E^x/(4-3*E^x))^(1/4), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 15 2013 *)
  • PARI
    a(n)=n!*polcoeff((exp(x +x*O(x^n))/(4-3*exp(x +x*O(x^n))))^(1/4),n)
    
  • PARI
    /* As solution to integral equation: */ a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=1+intformal(A^4*exp(-x+x*O(x^n))));n!*polcoeff(A,n)

Formula

E.g.f. A(x) satisfies: A(x) = 1 + integral( A(x)^5 * exp(-x) ).
O.g.f.: 1/(1 - x/(1-3*x/(1 - 5*x/(1-6*x/(1 - 9*x/(1-9*x/(1 - 13*x/(1-12*x/(1 - 17*x/(1-15*x/(1 - ...))))))))))), a continued fraction.
G.f.: 1/G(0) where G(k) = 1 - x*(4*k+1)/( 1 - 3*x*(k+1)/G(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Mar 23 2013
a(n) ~ n! * Gamma(3/4)/(sqrt(2)*3^(1/4)*n^(3/4)*Pi*log(4/3)^(n+1/4)). - Vaclav Kotesovec, Jun 15 2013
a(n) = 1 + 3 * Sum_{k=1..n-1} (binomial(n,k) - 1) * a(k). - Ilya Gutkovskiy, Jul 09 2020
From Seiichi Manyama, Nov 15 2023: (Start)
a(n) = Sum_{k=0..n} (-1)^(n-k) * (Product_{j=0..k-1} (4*j+1)) * Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^k * (3*k/n - 4) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = a(n-1) + 3*Sum_{k=1..n-1} binomial(n-1,k) * a(n-k). (End)

A136729 E.g.f.: A(x) = [ exp(x)/(5 - 4*exp(x)) ]^(1/5).

Original entry on oeis.org

1, 1, 5, 49, 701, 13177, 306821, 8520289, 274808525, 10095533833, 416131518293, 19017974164465, 954399901374749, 52173428322993433, 3085965087129209381, 196360349627069553793, 13374490368820471936109, 970904530181260115741737
Offset: 0

Views

Author

Paul D. Hanna, Jan 24 2008

Keywords

Crossrefs

Variants: A014307, A136727, A136728.

Programs

  • Mathematica
    CoefficientList[Series[(E^x/(5-4*E^x))^(1/5), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 22 2013 *)
  • PARI
    a(n)=n!*polcoeff((exp(x +x*O(x^n))/(5-4*exp(x +x*O(x^n))))^(1/5),n)
    
  • PARI
    /* As solution to integral equation: */ a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=1+intformal(A^6*exp(-x+x*O(x^n))));n!*polcoeff(A,n)

Formula

E.g.f. A(x) satisfies: A(x) = 1 + integral( A(x)^6 * exp(-x) ).
O.g.f.: 1/(1 - x/(1-4*x/(1 - 6*x/(1-8*x/(1 - 11*x/(1-16*x/(1 - 16*x/(1-24*x/(1 - 21*x/(1-32*x/(1 - ...)))))))))), a continued fraction.
G.f.: 1/G(0) where G(k) = 1 - x*(5*k+1)/( 1 - 4*x*(k+1)/G(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Mar 23 2013
a(n) ~ n! * sqrt(5-sqrt(5))*Gamma(4/5) / (2*Log[5/4]^(n+1/5) * 2^(9/10)*n^(4/5)*Pi). - Vaclav Kotesovec, Sep 22 2013
a(n) = 1 + 4 * Sum_{k=1..n-1} (binomial(n,k) - 1) * a(k). - Ilya Gutkovskiy, Jul 09 2020
From Seiichi Manyama, Nov 15 2023: (Start)
a(n) = Sum_{k=0..n} (-1)^(n-k) * (Product_{j=0..k-1} (5*j+1)) * Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^k * (4*k/n - 5) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = a(n-1) + 4*Sum_{k=1..n-1} binomial(n-1,k) * a(n-k). (End)

A136727 E.g.f.: A(x) = (exp(x)/(3 - 2*exp(x)))^(1/3).

Original entry on oeis.org

1, 1, 3, 17, 139, 1481, 19443, 303297, 5480219, 112549881, 2589274883, 65957355377, 1842897053099, 56038776055081, 1842278768795923, 65109900167188257, 2461735422517374779, 99148196540813749081
Offset: 0

Views

Author

Paul D. Hanna, Jan 24 2008

Keywords

Comments

G.f. of variant A014307 is B(x) = sqrt(exp(x)/(2-exp(x))), which satisfies: B(x) = 1 + integral(B(x)^3*exp(-x)).

Examples

			E.g.f.: A(x) = 1 + x + 3/2*x^2 + 17/6*x^3 + 139/24*x^4 + 1481/120*x^5 +...
		

Crossrefs

Cf. A201339, variants: A014307, A136728, A136729.

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[(Exp[x]/(3-2Exp[x]))^(1/3),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 26 2013 *)
  • PARI
    {a(n) = n!*polcoeff((exp(x +x*O(x^n))/(3-2*exp(x +x*O(x^n))))^(1/3),n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    /* As solution to integral equation: */
    {a(n) = local(A=1+x+x*O(x^n)); for(i=0,n, A = 1 + intformal(A^4*exp(-x+x*O(x^n)))); n!*polcoeff(A,n)}
    for(n=0,25,print1(a(n),", "))

Formula

E.g.f. A(x) satisfies: A(x) = 1 + integral( A(x)^4 * exp(-x) ).
O.g.f.: 1/(1 - x/(1-2*x/(1 - 4*x/(1-4*x/(1 - 7*x/(1-6*x/(1 - 10*x/(1-8*x/(1 - 13*x/(1-10*x/(1 - ...))))))))))), a continued fraction.
G.f.: 1/G(0) where G(k) = 1 - x*(3*k+1)/( 1 - 2*x*(k+1)/G(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Mar 23 2013
a(n) ~ n! * sqrt(3)*2^(2/3)*Gamma(2/3)/(4*Pi*n^(2/3)*(log(3/2))^(n+1/3)). - Vaclav Kotesovec, Jun 25 2013
a(n) = 1 + 2 * Sum_{k=1..n-1} (binomial(n,k) - 1) * a(k). - Ilya Gutkovskiy, Jul 09 2020
From Seiichi Manyama, Nov 15 2023: (Start)
a(n) = Sum_{k=0..n} (-1)^(n-k) * (Product_{j=0..k-1} (3*j+1)) * Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^k * (2*k/n - 3) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = a(n-1) + 2*Sum_{k=1..n-1} binomial(n-1,k) * a(n-k). (End)

A345697 Expansion of the e.g.f. sqrt(1 / (2*exp(x) - 2*x*exp(x) - 1)).

Original entry on oeis.org

1, 0, 1, 2, 12, 64, 485, 4038, 39991, 441992, 5492322, 75171700, 1127989577, 18381446004, 323527186957, 6114296752718, 123513004310640, 2655648779976640, 60554669008300565, 1459559515622280282, 37079264125376670955, 990226180225789628660, 27733277682719819190246, 812818183963966524137332, 24880254143735238825011057
Offset: 0

Views

Author

Mélika Tebni, Jun 24 2021

Keywords

Examples

			sqrt(1/(2*exp(x)-2*x*exp(x)-1)) = 1 + x^2/2! + 2*x^3/3! + 12*x^4/4! + 64*x^5/5! + 485*x^6/6! + 4038*x^7/7! + 39991*x^8/8! + 441992*x^9/9! + ...
a(13) = Sum_{k=1..6} A014307(k)*A008306(13,k) = 18381446004.
A014307(1)*A008306(13,1) == -1 (mod 13), because A014307(1) = 1 and A008306(13,1) = (13-1)!
For k>=2, A008306(13,k) == 0 (mod 13), result a(13) == -1 (mod 13).
		

Crossrefs

Programs

  • Maple
    A014307 := proc(n) option remember; `if`(n=0, 1 , 1+add((-1+binomial(n, k))*A014307(k), k=1..n-1)) end:
    A008306 := proc(n, k): if k=1 then (n-1)! ; elif n<=2*k-1 then 0; else (n-1)*procname(n-1, k)+(n-1)*procname(n-2, k-1) ; end if; end proc:
    a := n-> add((A014307(k)*A008306(n,k)), k=1..floor(n/2)):a(0):=1 ;
    seq(a(n), n=0..24);
    # second program:
    a := series(sqrt((1/(2*exp(x)-2*x*exp(x)-1))), x=0, 25):
    seq(n!*coeff(a, x, n), n=0..24);
  • Mathematica
    CoefficientList[Series[Sqrt[1/(2*E^x-2*x*E^x-1)], {x, 0, 24}], x] * Range[0, 24]!
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(sqrt(1 / (2*exp(x) - 2*x*exp(x) -1)))) \\ Michel Marcus, Jun 24 2021

Formula

E.g.f. y(x) satisfies y' = x*exp(x)*y^3.
a(0)=1, a(n) = Sum_{k=1..floor(n/2)} A014307(k)*A008306(n,k) for n >= 1.
For all p prime, a(p) == -1 (mod p).
a(n) ~ sqrt(2*c) * n^n / ((1-c)^(n+1) * exp(n)), where c = -LambertW(-exp(-1)/2). - Vaclav Kotesovec, Jun 25 2021

A360335 Array read by antidiagonals downwards: A(n,m) = number of set partitions of [2n] into 2-element subsets {i, i+k} with 1 <= k <= m.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 7, 5, 1, 1, 3, 12, 16, 8, 1, 1, 3, 15, 35, 38, 13, 1, 1, 3, 15, 63, 105, 89, 21, 1, 1, 3, 15, 90, 226, 329, 209, 34, 1, 1, 3, 15, 105, 417, 841, 1014, 491, 55, 1, 1, 3, 15, 105, 645, 1787, 3251, 3116, 1153, 89, 1
Offset: 1

Views

Author

Peter Dolland, Feb 03 2023

Keywords

Examples

			Square array begins:
  1,  1,    1,    1,     1,      1,      1,       1,       1, ...
  1,  2,    3,    3,     3,      3,      3,       3,       3, ...
  1,  3,    7,   12,    15,     15,     15,      15,      15, ...
  1,  5,   16,   35,    63,     90,    105,     105,     105, ...
  1,  8,   38,  105,   226,    417,    645,     840,     945, ...
  1, 13,   89,  329,   841,   1787,   3348,    5445,    7665, ...
  1, 21,  209, 1014,  3251,   7938,  16717,   31647,   53250, ...
  1, 34,  491, 3116, 12483,  36500,  86311,  180560,  344403, ...
  1, 55, 1153, 9610, 47481, 167631, 459803, 1062435, 2211181, ...
  ...
		

Crossrefs

Main diagonal is A014307.
Columns 1..4 are A000012, A000045(n+1), A052967, A320346.

Formula

A(n,m) = A001147(n) = A104443(n,2) for m >= 2n - 1.

A102365 Triangle T(n,k), 0 <= k <= n, read by rows: given by [ 1, 0, 3, 0, 5, 0, 7, 0, 9, 0, ...] DELTA [ 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 5, 1, 0, 1, 18, 15, 1, 0, 1, 58, 129, 37, 1, 0, 1, 179, 877, 646, 83, 1, 0, 1, 543, 5280, 8030, 2685, 177, 1, 0, 1, 1636, 29658, 82610, 56285, 10002, 367, 1, 0, 1, 4916, 159742, 756218, 919615, 335162, 34777, 749, 1, 0
Offset: 0

Views

Author

Philippe Deléham, Feb 22 2005

Keywords

Comments

Generalized Eulerian numbers A008292.
Reversal of A211399. - Philippe Deléham, Feb 12 2013

Examples

			Triangle begins:
  1;
  1,  0;
  1,  1,   0;
  1,  5,   1,  0;
  1, 18,  15,  1, 0;
  1, 58, 129, 37, 1, 0; ...
		

Crossrefs

Programs

  • Mathematica
    T[0, 0] := 1;  T[n_, -1] := 0;  T[n_, n_] := 0; T[n_, k_] := T[n, k] = (n - k)*T[n - 1, k - 1] + (2*k + 1)*T[n - 1, k]; Join[{1}, Table[If[k < 0, 0, If[k >= n, 0, T[n, k]]], {n, 1, 5}, {k, 0, n}] // Flatten] (* G. C. Greubel, Jun 30 2017 *)

Formula

T(n, k) = (n-k)*T(n-1, k-1) + (2*k+1)*T(n-1, k) with T(0, 0) = 1, T(0, k) = 0 if k > 0, T(n, k) = 0 if k < 0.
Sum_{k>=0} T(n, k)*2^k = A001147(n).
Sum_{k>=0} T(n, k) = A014307(n). - Philippe Deléham, Mar 19 2005
Showing 1-10 of 26 results. Next