cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A124214 E.g.f.: exp(x) / (2 - exp(3*x))^(1/3).

Original entry on oeis.org

1, 2, 10, 98, 1402, 26162, 601930, 16462658, 521659162, 18791451602, 758345497450, 33889063202018, 1661229537252922, 88627461127536242, 5112116659677605770, 317007674364657538178, 21030558126242472270682
Offset: 0

Views

Author

Karol A. Penson, Oct 19 2006

Keywords

Crossrefs

Programs

  • Maple
    A124214 := proc(n)
        exp(x)/root[3](2-exp(3*x)) ;
        coeftayl(%,x=0,n)*n! ;
    end proc: # R. J. Mathar, Dec 19 2013
  • Mathematica
    CoefficientList[Series[Exp[x]/(2-Exp[3*x])^(1/3), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 26 2013 *)
  • PARI
    a(n)=local(A=1+x); for(i=1, n, A=1+intformal(A+A^4+x*O(x^n))); n!*polcoeff(A, n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Dec 18 2013

Formula

a(n) ~ Gamma(2/3)*3^(n+1/2)*n^(n-1/6)/(sqrt(2*Pi)*exp(n)*(log(2))^(n+1/3)). - Vaclav Kotesovec, Jun 26 2013
E.g.f. A(x) satisfies: A'(x) = A(x) + A(x)^4. - Paul D. Hanna, Dec 18 2013
E.g.f. A(x) satisfies: A(x) = exp(x + Integral A(x)^3 dx) with A(0)=1. - Paul D. Hanna, Dec 18 2013
a(n) = 2^(-1/3) * Sum_{k >= 0} (1/18)^k*A004987(k)*(3*k + 1)^n = 2^(-1/3) * Sum_{k >= 0} (-1/2)^k*binomial(-1/3, k)*(3*k + 1)^n. Cf. A124212 and A229558. - Peter Bala, Aug 30 2016

A186695 A Galton triangle: T(n,k) = (2k-1)*(T(n-1,k) + T(n-1,k-1)): a type B analog of the ordered Bell numbers A019538.

Original entry on oeis.org

1, 1, 3, 1, 12, 15, 1, 39, 135, 105, 1, 120, 870, 1680, 945, 1, 363, 4950, 17850, 23625, 10395, 1, 1092, 26565, 159600, 373275, 374220, 135135, 1, 3279, 138285, 1303155, 4795875, 8222445, 6621615, 2027025
Offset: 1

Views

Author

Peter Bala, Mar 26 2011

Keywords

Comments

The row polynomials R(n,x) of A019538 satisfy the recurrence relation R(n+1,x) = x*d/dx((1+x)*R(n,x)), and have the expansion R(n,x) = Sum_{k = 1..n} k!*Stirling2(n,k)*x^k.
Here we consider a sequence of polynomials P(n,x) (n>=1) defined by means of the similar recursion P(n+1,x) = x*d/dx((1+x^2)*P(n,x)), with starting value P(1,x) = x.
The first few polynomials are P(1,x) = x, P(2,x) = x + 3*x^3, P(3,x) = x + 12*x^3 + 15*x^5, and P(4,x) = x + 39*x^3 + 135*x^5 + 105*x^7.
Clearly, the P(n,x) are odd polynomials of the form P(n,x) = Sum_{k = 1..n} T(n,k)*x^(2*k-1).
This triangle lists the coefficients T(n,k). They are related to A039755, the type B Stirling numbers of Suter, by T(n,k) = (2*k-1)!!*A039755(n-1,k-1).

Examples

			Triangle begins
  n\k.|..1.....2.....3......4......5......6
  =========================================
  ..1.|..1
  ..2.|..1.....3
  ..3.|..1....12....15
  ..4.|..1....39...135....105
  ..5.|..1...120...870...1680....945
  ..6.|..1...363..4950..17850..23625..10395
  ..
Examples of recurrence relation
  T(4,3) = 5*(T(3,3)+T(3,2)) = 5*(15+12) = 135;
  T(6,4) = 7*(T(5,4)+T(5,3)) = 7*(1680+870) = 17850.
		

Crossrefs

Programs

  • Maple
    A186695 := proc(n, k) option remember; if k < 1 or k > n then 0; elif k = 1 then 1; else (2*k-1)*(procname(n-1, k) + procname(n-1, k-1)) ; end if; end proc: seq(seq(A186695(n,k),k = 1..n),n = 1..10);
  • Mathematica
    T[n_, k_] := (2k-1)! Sum[(-1)^(k-j-1) (2j+1)^(n-1) Binomial[k-1, j], {j, 0, k-1}] / (2^(k-1) (k-1)!)^2;
    Table[T[n, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 02 2019 *)

Formula

T(n+1,k+1) = ((2*k+1)!/(2^k*k!)^2)*Sum_{j = 0..k} (-1)^(k-j)*binomial(k,j)*(2*j+1)^n.
Recurrence relation: T(n,k) = (2k-1)*(T(n-1,k) + T(n-1,k-1)) with boundary conditions T(n,1) = 1, T(1,k) = 0 for k >= 2.
E.g.f.: F(x,t) = (x/(1+x))*(exp(t)/sqrt((1+x) - x*exp(2*t)) - 1) = Sum_{n>=1} R(n,x)*t^n/n! = x*t + (x + 3*x^2)*t^2/2! + (x + 12*x^2 + 15*x^3)*t^3/3! + ....
Compare with the e.g.f. for A019538, which is (x/(1+x))*(exp(t)/((1+x) - x*exp(t))-1).
The row polynomials R(n,x) are related to the polynomials P(n,x) of the comments section by P(n,x) = 1/x*R(n,x^2).
The generating function F(x,t) satisfies the partial differential equation d/dt(F) = 2*x*(1+x)*d/dx(F) + (x-1)*F + x.
It follows that the polynomials P(n,x) := Sum_{k = 1..n} T(n,k)*x^(2*k-1) satisfy the recurrence P(n+1,x) = x*d/dx((1+x^2)*P(n,x)), with P(1,x) = x. (Cf. the recurrence relation for row polynomials of A185896.)
The recurrence relation for T(n,k) given above now follows.
The row polynomials R(n,x) = Sum_{k = 1..n} T(n,k)*x^k satisfy R(n,-x-1) = (-1)^n*((1+x)/x)*S(n,x), where S(n,x) is the n-th row polynomial of A187075.
In addition, R(n,1/(x-1)) = (1/(x-1)^n)*Q(n-1,x), where Q(n,x) is the n-th row polynomial of A156919.
Row sums are [1,4,28,280,3616...] = 1/2*A124212(n) for n >= 1.
Main diagonal is [1,3,15,105,...] = A001147(k) for k >= 1.
Put S(n) = sum {k = 1..n} (-1)^k*T(n,k)/(k+1). Then for m>=2, S(2*m-1) = S(2*m) = (4^m-1)*Bernoulli(2*m)/m.
From Peter Bala, Aug 30 2016: (Start)
n-th row polynomial R(n,x) = 1/(1 + x)^(3/2) * Sum_{k >= 0} (1/4)^k*(x/(1 + x))^k*binomial(2*k,k)*(2*k + 1)^n.
R(n,x) = (1/(1 + x))*Sum_{k = 0..n} binomial(2*k,k)*A145901(n,k)*(x/4)^k. (End)

A229558 E.g.f.: exp(x) / (2 - exp(4*x))^(1/4).

Original entry on oeis.org

1, 2, 12, 152, 2832, 69152, 2089152, 75204992, 3142025472, 149428961792, 7969790856192, 471098477484032, 30567292903821312, 2159857294035525632, 165083372031671058432, 13570774387950150582272, 1193933787763434969956352, 111932230270819401046556672
Offset: 0

Views

Author

Paul D. Hanna, Dec 18 2013

Keywords

Examples

			E.g.f.: A(x) = 1 + 2*x + 12*x^2/2! + 152*x^3/3! + 2832*x^4/4! + 69152*x^5/5! +...
where A(x)^5 = 1 + 10*x + 140*x^2/2! + 2680*x^3/3! + 66320*x^4/4! +...
Also, A(x)^4 = 1 + 8*x + 96*x^2/2! + 1664*x^3/3! + 38400*x^4/4! +...
and log(A(x)) = 2*x + 8*x^2/2! + 96*x^3/3! + 1664*x^4/4! + 38400*x^5/5! +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[E^x/(2-E^(4*x))^(1/4), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Dec 19 2013 *)
  • PARI
    {a(n)=local(A=1+x,X=x+x*O(x^n));n!*polcoeff(exp(X)/(2-exp(4*X))^(1/4),n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+intformal(A+A^5+x*O(x^n))); n!*polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

E.g.f. A(x) satisfies: A'(x) = A(x) + A(x)^5.
E.g.f. A(x) satisfies: A(x) = exp(x + Integral A(x)^4 dx).
a(n) ~ GAMMA(3/4) * 4^n * n^(n-1/4) / (sqrt(Pi) * exp(n) * log(2)^(n+1/4)). - Vaclav Kotesovec, Dec 19 2013
a(n) = 1/2^(1/4) * Sum_{k >= 0} (1/32)^k*A034385(k)*(4*k + 1)^n = 1/2^(1/4)*Sum_{k >= 0} (-1/2)^k*binomial(-1/4, k)*(4*k + 1)^n. Cf. A124212 and A124214. - Peter Bala, Aug 30 2016

A276371 Expansion of e.g.f. exp(x/2)/(2 - exp(2*x))^(1/4).

Original entry on oeis.org

1, 1, 3, 19, 177, 2161, 32643, 587539, 12273537, 291853441, 7782998883, 230028553459, 7462717994097, 263654454838321, 10075889406229923, 414147167601017779, 18217983822073897857, 853975145498805244801, 42495107452208870429763, 2237264405984004517212499, 124243242448367338311920817, 7258224393227482972980320881, 444967879322677755285771182403, 28563002475012109334240250609619
Offset: 0

Views

Author

Paul D. Hanna, Sep 09 2016

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 19*x^3/3! + 177*x^4/4! + 2161*x^5/5! + 32643*x^6/6! + 587539*x^7/7! + 12273537*x^8/8! + 291853441*x^9/9! + 7782998883*x^10/10! +...
such that A(x) = exp(x/2)/(2 - exp(2*x))^(1/4).
		

Crossrefs

Cf. A124212.

Programs

  • Mathematica
    With[{nn = 50}, CoefficientList[Series[Exp[x/2]/(2 - Exp[2*x])^(1/4), {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, Apr 09 2017 *)
  • PARI
    {a(n)=local(A=1+x, X=x+x*O(x^n)); A = exp(X/2)/(2-exp(2*X))^(1/4); n!*polcoeff(A, n)}
    for(n=0,30,print1(a(n),", "))

Formula

E.g.f. A(x) satisfies: A'(x) = A(x)*(1 + A(x)^4)/2 with A(0)=1.
a(2*n) = 0 (mod 3), a(2*n+1) = 1 (mod 3), for n>=0.
a(n) ~ Gamma(3/4) * 2^n * n^(n-1/4) / (sqrt(Pi) * exp(n) * (log(2))^(n+1/4)). - Vaclav Kotesovec, Sep 11 2016
From Seiichi Manyama, Nov 16 2023: (Start)
a(n) = Sum_{k=0..n} (-2)^(n-k) * (Product_{j=0..k-1} (4*j+1)) * Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-2)^k * (3/2 * k/n - 2) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = a(n-1) + Sum_{k=1..n-1} 2^k * binomial(n-1,k) * a(n-k). (End)

A124213 Expansion of e.g.f.: exp(exp(x)/sqrt(2-exp(2*x))-1).

Original entry on oeis.org

1, 2, 12, 112, 1408, 22144, 417216, 9148416, 228649472, 6412193280, 199301663744, 6798026395648, 252397715738624, 10131114555244544, 437100940892913664, 20169428831476678656, 991081906535967948800, 51662621871173444698112, 2847287574653833612623872
Offset: 0

Views

Author

Karol A. Penson, Oct 19 2006

Keywords

Comments

Exponential transform of A124212.

Crossrefs

Cf. A124212.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(Exp(x)/Sqrt(2-Exp(2*x))-1))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Sep 27 2018
  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[Exp[Exp[x]/Sqrt[2 - Exp[2*x]] - 1], {x,0,nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Sep 27 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(exp(x)/sqrt(2-exp(2*x))-1))) \\ G. C. Greubel, Sep 27 2018
    

Formula

E.g.f.: exp(exp(x)/sqrt(2-exp(2*x))-1).
a(n) ~ 2^(n + 1/6) * exp(3*n^(1/3)/(2^(2/3) * log(2)^(1/3)) - n - 1) * n^(n - 1/3) / (sqrt(3) * log(2)^(n + 1/6)). - Vaclav Kotesovec, Jun 26 2022

A365777 Expansion of e.g.f. (exp(2*x) / (2 - exp(2*x)))^(3/4).

Original entry on oeis.org

1, 3, 15, 117, 1257, 17163, 284055, 5522877, 123344817, 3111071283, 87454712895, 2710961144037, 91862770847577, 3378032307195003, 133970268354806535, 5699864583381903597, 258956671286986317537, 12512342291081486212323, 640686944845321006836975
Offset: 0

Views

Author

Seiichi Manyama, Nov 16 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-2)^(n-k)*prod(j=0, k-1, 4*j+3)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (-2)^(n-k) * (Product_{j=0..k-1} (4*j+3)) * Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-2)^k * (1/2 * k/n - 2) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 3*a(n-1) + Sum_{k=1..n-1} 2^k * binomial(n-1,k) * a(n-k).

A176785 Sequence with e.g.f. g(x) = -(1/2)*sqrt(2*exp(-2*x)-1) + 1/2.

Original entry on oeis.org

0, 1, 0, 4, 24, 256, 3360, 53824, 1016064, 22095616, 543966720, 14955833344, 454227400704, 15103031627776, 545668238868480, 21286707282264064, 891735287528914944, 39926103010743156736
Offset: 0

Views

Author

Karol A. Penson, Apr 26 2010

Keywords

Examples

			a(4) = 24: The 24 plane increasing trees on 4 vertices are
............................................................
.........1(x4 colors).......1(x4 colors).......1(x4 colors).
......../|\................/|\................/|\...........
......./.|.\............../.|.\............../.|.\..........
......2..3..4............2..4..3............3..2..4.........
............................................................
.........1(x4 colors).......1(x4 colors).......1(x4 colors).
......../|\................/|\................/|\...........
......./.|.\............../.|.\............../.|.\..........
......3..4..2............4..2..3............4..3..2.........
............................................................
		

Crossrefs

Programs

  • Mathematica
    max = 17; g[x_] := -(1/2)*Sqrt[2*Exp[-2*x] - 1] + 1/2; CoefficientList[ Series[ g[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Oct 05 2011 *)
  • PARI
    x='x+O('x^66); concat ([0], Vec( serlaplace( serreverse( -1/2*log(1-2*x+2*x^2) ) ) ) ) \\ Joerg Arndt, Mar 01 2014

Formula

The e.g.f. A(x) satisfies the autonomous differential equation
A' = (1-2*A+2*A^2)/(1-2*A) with A(0) = 0. The compositional inverse of the e.g.f. is -1/2*log(1-2*x+2*x^2).
a(n) = (-1)^(n-1)*D^(n-1)(1) evaluated at x = 1, where D denotes the operator g(x) -> d/dx((x+1/x)*g(x)).
Applying [Bergeron et al., Theorem 1] to the result x = int {t = 0..A(x)} 1/phi(t), where phi(t) = (1-2*t+2*t^2)/(1-2*t) = 1+2*t^2+4*t^3+8*t^4+... leads to the following combinatorial interpretation for this sequence: a(n) gives the number of plane increasing trees on n vertices with no vertices of outdegree 1 and where each vertex of outdegree k >= 2 can be colored in 2^(k-1) ways. An example is given below. - Peter Bala, Sep 06 2011
a(n) ~ 2^(n-3/2)*n^(n-1)/(exp(n)*(log(2))^(n-1/2)). - Vaclav Kotesovec, Jun 28 2013
a(n+1) = 1/sqrt(2) * Sum_{k >= 0} (1/8)^k*binomial(2*k,k)*(2*k - 1)^n = 1/sqrt(2)*Sum_{k >= 0} (-1/2)^k*binomial(-1/2,k)*(2*k - 1)^n = Sum_{k = 0..n} Sum_{i = 0..k} (-1)^(k-i)/4^k* binomial(2*k,k)*binomial(k,i)*(2*i - 1)^n. Cf. A124212, A124214 and A229558. - Peter Bala, Aug 30 2016

A229559 E.g.f. A(x) satisfies: A'(x) = A(x) - A(x)^2 + A(x)^3.

Original entry on oeis.org

1, 1, 2, 8, 46, 340, 3080, 33020, 408760, 5737600, 90041480, 1562155760, 29688699040, 613378208080, 13687826477600, 328103392918400, 8407745335871200, 229363476365320000, 6636554484183747200, 203007064284501963200, 6545704564601880726400, 221887453210925123353600
Offset: 0

Views

Author

Paul D. Hanna, Dec 18 2013

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 2*x^2/2! + 8*x^3/3! + 46*x^4/4! + 340*x^5/5! +...
where A(x)^2 = 1 + 2*x + 6*x^2/2! + 28*x^3/3! + 180*x^4/4! + 1460*x^5/5! +...
also, A(x)^3 = 1 + 3*x + 12*x^2/2! + 66*x^3/3! + 474*x^4/4! + 4200*x^5/5! +...
and log(A(x)) = x + x^2/2! + 4*x^3/3! + 20*x^4/4! + 134*x^5/5! + 1120*x^6/6! +...
		

Crossrefs

Cf. A124212.

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+intformal(A-A^2+A^3+x*O(x^n))); n!*polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

E.g.f. A(x) satisfies: A(x) = exp(x + Integral A(x)^2 - A(x) dx).
a(n) ~ n^n * 3^(3*n/2+3/4) / (exp(n) * Pi^(n+1/2)). - Vaclav Kotesovec, Dec 19 2013
Showing 1-8 of 8 results.