cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A124212 Expansion of e.g.f. exp(x)/sqrt(2-exp(2*x)).

Original entry on oeis.org

1, 2, 8, 56, 560, 7232, 114368, 2139776, 46223360, 1132124672, 30999600128, 938366468096, 31114518056960, 1121542540992512, 43664751042265088, 1826043989622358016, 81635676596544143360
Offset: 0

Views

Author

Karol A. Penson, Oct 19 2006

Keywords

Crossrefs

Programs

  • Maple
      N:= 60; # to get a(n) for n <= N
    S:= series(exp(x)/sqrt(2-exp(2*x)), x, N+1):
    seq(coeff(S,x,j), j=0..N); # Robert Israel, May 19 2014
  • Mathematica
    CoefficientList[Series[E^x/Sqrt[2-E^(2*x)]-1, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 03 2013 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=0,n,A=1+intformal(A+A^3)); n!*polcoeff(A,n)} \\ Paul D. Hanna, Oct 04 2008

Formula

E.g.f. satisfies: A'(x) = A(x) + A(x)^3 with A(0)=1. [From Paul D. Hanna, Oct 04 2008]
G.f.: 1/G(0) where G(k) = 1 - x*(4*k+2)/( 1 - 2*x*(k+1)/G(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Mar 23 2013
G.f.: 2/G(0), where G(k)= 1 + 1/(1 - x*(8*k+4)/(x*(8*k+4) - 1 + 4*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
a(n) ~ 2^(n+1/2)*n^n/(log(2)^(n+1/2)*exp(n)). - Vaclav Kotesovec, Jun 03 2013
From Peter Bala, Aug 30 2016: (Start)
a(n) = 1/sqrt(2) * Sum_{k >= 0} (1/8)^k*binomial(2*k,k)*(2*k + 1)^n = 1/sqrt(2) * Sum_{k >= 0} (-1/2)^k*binomial(-1/2,k)*(2*k + 1)^n. Cf. A176785, A124214 and A229558.
a(n) = Sum_{k = 0..n} (1/4)^k*binomial(2*k,k)*A145901(n,k).
a(n) = Sum_{k = 0..n} ( Sum_{i = 0..k} (-1)^(k-i)/4^k* binomial(2*k,k)*binomial(k,i)*(2*i + 1)^n ). (End)
a(n) = 2^n * A014307(n). - Seiichi Manyama, Nov 18 2023

Extensions

Definition corrected by Robert Israel, May 19 2014

A365777 Expansion of e.g.f. (exp(2*x) / (2 - exp(2*x)))^(3/4).

Original entry on oeis.org

1, 3, 15, 117, 1257, 17163, 284055, 5522877, 123344817, 3111071283, 87454712895, 2710961144037, 91862770847577, 3378032307195003, 133970268354806535, 5699864583381903597, 258956671286986317537, 12512342291081486212323, 640686944845321006836975
Offset: 0

Views

Author

Seiichi Manyama, Nov 16 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-2)^(n-k)*prod(j=0, k-1, 4*j+3)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (-2)^(n-k) * (Product_{j=0..k-1} (4*j+3)) * Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-2)^k * (1/2 * k/n - 2) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 3*a(n-1) + Sum_{k=1..n-1} 2^k * binomial(n-1,k) * a(n-k).

A365782 Expansion of e.g.f. 1 / (3 - 2 * exp(2*x))^(1/4).

Original entry on oeis.org

1, 1, 7, 79, 1273, 26761, 694207, 21426679, 766897873, 31228168561, 1425551226007, 72103869999679, 4002503339419273, 241916116809963961, 15814645240322565007, 1111830805751346135079, 83649120614618202845473, 6705916845517938558372961
Offset: 0

Views

Author

Seiichi Manyama, Nov 16 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*prod(j=0, k-1, 4*j+1)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} 2^(n-k) * (Product_{j=0..k-1} (4*j+1)) * Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} 2^k * (2 - 3/2 * k/n) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = a(n-1) - 3*Sum_{k=1..n-1} (-2)^k * binomial(n-1,k) * a(n-k).
Showing 1-3 of 3 results.