cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A124212 Expansion of e.g.f. exp(x)/sqrt(2-exp(2*x)).

Original entry on oeis.org

1, 2, 8, 56, 560, 7232, 114368, 2139776, 46223360, 1132124672, 30999600128, 938366468096, 31114518056960, 1121542540992512, 43664751042265088, 1826043989622358016, 81635676596544143360
Offset: 0

Views

Author

Karol A. Penson, Oct 19 2006

Keywords

Crossrefs

Programs

  • Maple
      N:= 60; # to get a(n) for n <= N
    S:= series(exp(x)/sqrt(2-exp(2*x)), x, N+1):
    seq(coeff(S,x,j), j=0..N); # Robert Israel, May 19 2014
  • Mathematica
    CoefficientList[Series[E^x/Sqrt[2-E^(2*x)]-1, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 03 2013 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=0,n,A=1+intformal(A+A^3)); n!*polcoeff(A,n)} \\ Paul D. Hanna, Oct 04 2008

Formula

E.g.f. satisfies: A'(x) = A(x) + A(x)^3 with A(0)=1. [From Paul D. Hanna, Oct 04 2008]
G.f.: 1/G(0) where G(k) = 1 - x*(4*k+2)/( 1 - 2*x*(k+1)/G(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Mar 23 2013
G.f.: 2/G(0), where G(k)= 1 + 1/(1 - x*(8*k+4)/(x*(8*k+4) - 1 + 4*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
a(n) ~ 2^(n+1/2)*n^n/(log(2)^(n+1/2)*exp(n)). - Vaclav Kotesovec, Jun 03 2013
From Peter Bala, Aug 30 2016: (Start)
a(n) = 1/sqrt(2) * Sum_{k >= 0} (1/8)^k*binomial(2*k,k)*(2*k + 1)^n = 1/sqrt(2) * Sum_{k >= 0} (-1/2)^k*binomial(-1/2,k)*(2*k + 1)^n. Cf. A176785, A124214 and A229558.
a(n) = Sum_{k = 0..n} (1/4)^k*binomial(2*k,k)*A145901(n,k).
a(n) = Sum_{k = 0..n} ( Sum_{i = 0..k} (-1)^(k-i)/4^k* binomial(2*k,k)*binomial(k,i)*(2*i + 1)^n ). (End)
a(n) = 2^n * A014307(n). - Seiichi Manyama, Nov 18 2023

Extensions

Definition corrected by Robert Israel, May 19 2014

A124214 E.g.f.: exp(x) / (2 - exp(3*x))^(1/3).

Original entry on oeis.org

1, 2, 10, 98, 1402, 26162, 601930, 16462658, 521659162, 18791451602, 758345497450, 33889063202018, 1661229537252922, 88627461127536242, 5112116659677605770, 317007674364657538178, 21030558126242472270682
Offset: 0

Views

Author

Karol A. Penson, Oct 19 2006

Keywords

Crossrefs

Programs

  • Maple
    A124214 := proc(n)
        exp(x)/root[3](2-exp(3*x)) ;
        coeftayl(%,x=0,n)*n! ;
    end proc: # R. J. Mathar, Dec 19 2013
  • Mathematica
    CoefficientList[Series[Exp[x]/(2-Exp[3*x])^(1/3), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 26 2013 *)
  • PARI
    a(n)=local(A=1+x); for(i=1, n, A=1+intformal(A+A^4+x*O(x^n))); n!*polcoeff(A, n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Dec 18 2013

Formula

a(n) ~ Gamma(2/3)*3^(n+1/2)*n^(n-1/6)/(sqrt(2*Pi)*exp(n)*(log(2))^(n+1/3)). - Vaclav Kotesovec, Jun 26 2013
E.g.f. A(x) satisfies: A'(x) = A(x) + A(x)^4. - Paul D. Hanna, Dec 18 2013
E.g.f. A(x) satisfies: A(x) = exp(x + Integral A(x)^3 dx) with A(0)=1. - Paul D. Hanna, Dec 18 2013
a(n) = 2^(-1/3) * Sum_{k >= 0} (1/18)^k*A004987(k)*(3*k + 1)^n = 2^(-1/3) * Sum_{k >= 0} (-1/2)^k*binomial(-1/3, k)*(3*k + 1)^n. Cf. A124212 and A229558. - Peter Bala, Aug 30 2016

A176785 Sequence with e.g.f. g(x) = -(1/2)*sqrt(2*exp(-2*x)-1) + 1/2.

Original entry on oeis.org

0, 1, 0, 4, 24, 256, 3360, 53824, 1016064, 22095616, 543966720, 14955833344, 454227400704, 15103031627776, 545668238868480, 21286707282264064, 891735287528914944, 39926103010743156736
Offset: 0

Views

Author

Karol A. Penson, Apr 26 2010

Keywords

Examples

			a(4) = 24: The 24 plane increasing trees on 4 vertices are
............................................................
.........1(x4 colors).......1(x4 colors).......1(x4 colors).
......../|\................/|\................/|\...........
......./.|.\............../.|.\............../.|.\..........
......2..3..4............2..4..3............3..2..4.........
............................................................
.........1(x4 colors).......1(x4 colors).......1(x4 colors).
......../|\................/|\................/|\...........
......./.|.\............../.|.\............../.|.\..........
......3..4..2............4..2..3............4..3..2.........
............................................................
		

Crossrefs

Programs

  • Mathematica
    max = 17; g[x_] := -(1/2)*Sqrt[2*Exp[-2*x] - 1] + 1/2; CoefficientList[ Series[ g[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Oct 05 2011 *)
  • PARI
    x='x+O('x^66); concat ([0], Vec( serlaplace( serreverse( -1/2*log(1-2*x+2*x^2) ) ) ) ) \\ Joerg Arndt, Mar 01 2014

Formula

The e.g.f. A(x) satisfies the autonomous differential equation
A' = (1-2*A+2*A^2)/(1-2*A) with A(0) = 0. The compositional inverse of the e.g.f. is -1/2*log(1-2*x+2*x^2).
a(n) = (-1)^(n-1)*D^(n-1)(1) evaluated at x = 1, where D denotes the operator g(x) -> d/dx((x+1/x)*g(x)).
Applying [Bergeron et al., Theorem 1] to the result x = int {t = 0..A(x)} 1/phi(t), where phi(t) = (1-2*t+2*t^2)/(1-2*t) = 1+2*t^2+4*t^3+8*t^4+... leads to the following combinatorial interpretation for this sequence: a(n) gives the number of plane increasing trees on n vertices with no vertices of outdegree 1 and where each vertex of outdegree k >= 2 can be colored in 2^(k-1) ways. An example is given below. - Peter Bala, Sep 06 2011
a(n) ~ 2^(n-3/2)*n^(n-1)/(exp(n)*(log(2))^(n-1/2)). - Vaclav Kotesovec, Jun 28 2013
a(n+1) = 1/sqrt(2) * Sum_{k >= 0} (1/8)^k*binomial(2*k,k)*(2*k - 1)^n = 1/sqrt(2)*Sum_{k >= 0} (-1/2)^k*binomial(-1/2,k)*(2*k - 1)^n = Sum_{k = 0..n} Sum_{i = 0..k} (-1)^(k-i)/4^k* binomial(2*k,k)*binomial(k,i)*(2*i - 1)^n. Cf. A124212, A124214 and A229558. - Peter Bala, Aug 30 2016
Showing 1-3 of 3 results.