A124212
Expansion of e.g.f. exp(x)/sqrt(2-exp(2*x)).
Original entry on oeis.org
1, 2, 8, 56, 560, 7232, 114368, 2139776, 46223360, 1132124672, 30999600128, 938366468096, 31114518056960, 1121542540992512, 43664751042265088, 1826043989622358016, 81635676596544143360
Offset: 0
-
N:= 60; # to get a(n) for n <= N
S:= series(exp(x)/sqrt(2-exp(2*x)), x, N+1):
seq(coeff(S,x,j), j=0..N); # Robert Israel, May 19 2014
-
CoefficientList[Series[E^x/Sqrt[2-E^(2*x)]-1, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 03 2013 *)
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=0,n,A=1+intformal(A+A^3)); n!*polcoeff(A,n)} \\ Paul D. Hanna, Oct 04 2008
A229558
E.g.f.: exp(x) / (2 - exp(4*x))^(1/4).
Original entry on oeis.org
1, 2, 12, 152, 2832, 69152, 2089152, 75204992, 3142025472, 149428961792, 7969790856192, 471098477484032, 30567292903821312, 2159857294035525632, 165083372031671058432, 13570774387950150582272, 1193933787763434969956352, 111932230270819401046556672
Offset: 0
E.g.f.: A(x) = 1 + 2*x + 12*x^2/2! + 152*x^3/3! + 2832*x^4/4! + 69152*x^5/5! +...
where A(x)^5 = 1 + 10*x + 140*x^2/2! + 2680*x^3/3! + 66320*x^4/4! +...
Also, A(x)^4 = 1 + 8*x + 96*x^2/2! + 1664*x^3/3! + 38400*x^4/4! +...
and log(A(x)) = 2*x + 8*x^2/2! + 96*x^3/3! + 1664*x^4/4! + 38400*x^5/5! +...
-
CoefficientList[Series[E^x/(2-E^(4*x))^(1/4), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Dec 19 2013 *)
-
{a(n)=local(A=1+x,X=x+x*O(x^n));n!*polcoeff(exp(X)/(2-exp(4*X))^(1/4),n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=local(A=1+x); for(i=1, n, A=1+intformal(A+A^5+x*O(x^n))); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
A228608
E.g.f. A(x) satisfies: A'(x) = A(x)^2 + A(x)^4.
Original entry on oeis.org
1, 2, 12, 128, 1968, 39488, 977088, 28742912, 979744512, 37968868352, 1648597834752, 79272057049088, 4181485522464768, 240067201819885568, 14902137637759008768, 994529776192394166272, 71009035425186633940992, 5401058272888913168433152, 435991257271370763778916352
Offset: 0
E.g.f.: A(x) = 1 + 2*x + 12*x^2/2! + 128*x^3/3! + 1968*x^4/4! + 39488*x^5/5! +...
Related expansions.
A(x)^2 = 1 + 4*x + 32*x^2/2! + 400*x^3/3! + 6848*x^4/4! + 149056*x^5/5! +...
A(x)^4 = 1 + 8*x + 96*x^2/2! + 1568*x^3/3! + 32640*x^4/4! + 828032*x^5/5! +...
The logarithm of e.g.f. A(x) begins:
log(A(x)) = 2*x + 8*x^2/2! + 72*x^3/3! + 992*x^4/4! + 18336*x^5/5! +...
and equals Integral A(x) + A(x)^3 dx, where
A(x)^3 = 1 + 6*x + 60*x^2/2! + 864*x^3/3! + 16368*x^4/4! + 385344*x^5/5! +...
-
CoefficientList[Exp[InverseSeries[Series[1-Exp[-x]-ArcTan[Tanh[x/2]], {x, 0, 20}], x]],x]*Range[0, 20]! (* Vaclav Kotesovec, Dec 20 2013 *)
-
/* Explicit formula: */
{a(n)=local(A,X=x+x^2*O(x^n));A=exp(serreverse(1-exp(-X) - atan(tanh(X/2))));n!*polcoeff(A,n)}
for(n=0,20,print1(a(n),", "))
-
/* By definition: A'(x) = A(x)^2 + A(x)^4: */
{a(n)=local(A=1+x); for(i=1, n, A=1+intformal(A^2+A^4+x*O(x^n))); n!*polcoeff(A, n)}
for(n=0,20,print1(a(n),", "))
-
/* From: A(x) = exp( Integral A(x) + A(x)^3 dx ): */
{a(n)=local(A=1+x); for(i=1, n, A=exp(intformal(A+A^3)+x*O(x^n))); n!*polcoeff(A, n)}
for(n=0,20,print1(a(n),", "))
A176785
Sequence with e.g.f. g(x) = -(1/2)*sqrt(2*exp(-2*x)-1) + 1/2.
Original entry on oeis.org
0, 1, 0, 4, 24, 256, 3360, 53824, 1016064, 22095616, 543966720, 14955833344, 454227400704, 15103031627776, 545668238868480, 21286707282264064, 891735287528914944, 39926103010743156736
Offset: 0
a(4) = 24: The 24 plane increasing trees on 4 vertices are
............................................................
.........1(x4 colors).......1(x4 colors).......1(x4 colors).
......../|\................/|\................/|\...........
......./.|.\............../.|.\............../.|.\..........
......2..3..4............2..4..3............3..2..4.........
............................................................
.........1(x4 colors).......1(x4 colors).......1(x4 colors).
......../|\................/|\................/|\...........
......./.|.\............../.|.\............../.|.\..........
......3..4..2............4..2..3............4..3..2.........
............................................................
-
max = 17; g[x_] := -(1/2)*Sqrt[2*Exp[-2*x] - 1] + 1/2; CoefficientList[ Series[ g[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Oct 05 2011 *)
-
x='x+O('x^66); concat ([0], Vec( serlaplace( serreverse( -1/2*log(1-2*x+2*x^2) ) ) ) ) \\ Joerg Arndt, Mar 01 2014
A124215
E.g.f.: exp(exp(x)/(2-exp(3*x))^(1/3)-1).
Original entry on oeis.org
1, 2, 14, 166, 2742, 57734, 1475078, 44279414, 1526285814, 59383786278, 2573408251366, 122892818420310, 6411057873364822, 362707216829623046, 22117095828202632262, 1445932369337590029622, 100884144820332079749302, 7481824780607157773071590
Offset: 0
Showing 1-5 of 5 results.
Comments