cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A156919 Table of coefficients of polynomials related to the Dirichlet eta function.

Original entry on oeis.org

1, 2, 1, 4, 10, 1, 8, 60, 36, 1, 16, 296, 516, 116, 1, 32, 1328, 5168, 3508, 358, 1, 64, 5664, 42960, 64240, 21120, 1086, 1, 128, 23488, 320064, 900560, 660880, 118632, 3272, 1, 256, 95872, 2225728
Offset: 0

Views

Author

Johannes W. Meijer, Feb 20 2009, Jun 24 2009

Keywords

Comments

Essentially the same as A185411. Row reverse of A185410. - Peter Bala, Jul 24 2012
The SF(z; n) formulas, see below, were discovered while studying certain properties of the Dirichlet eta function.
From Peter Bala, Apr 03 2011: (Start)
Let D be the differential operator 2*x*d/dx. The row polynomials of this table come from repeated application of the operator D to the function g(x) = 1/sqrt(1 - x). For example,
D(g) = x*g^3
D^2(g) = x*(2 + x)*g^5
D^3(g) = x*(4 + 10*x + x^2)*g^7
D^4(g) = x*(8 + 60*x + 36*x^2 + x^3)*g^9.
Thus this triangle is analogous to the triangle of Eulerian numbers A008292, whose row polynomials come from the repeated application of the operator x*d/dx to the function 1/(1 - x). (End)

Examples

			The first few rows of the triangle are:
  [1]
  [2, 1]
  [4, 10, 1]
  [8, 60, 36, 1]
  [16, 296, 516, 116, 1]
The first few P(z;n) are:
  P(z; n=0) = 1
  P(z; n=1) = 2 + z
  P(z; n=2) = 4 + 10*z + z^2
  P(z; n=3) = 8 + 60*z + 36*z^2 + z^3
The first few SF(z;n) are:
  SF(z; n=0) = (1/2)*(1)/(1-z)^(3/2);
  SF(z; n=1) = (1/4)*(2+z)/(1-z)^(5/2);
  SF(z; n=2) = (1/8)*(4+10*z+z^2)/(1-z)^(7/2);
  SF(z; n=3) = (1/16)*(8+60*z+36*z^2+z^3)/(1-z)^(9/2);
In the Savage-Viswanathan paper, the coefficients appear as
  1;
  1,    2;
  1,   10,     4;
  1,   36,    60,     8;
  1,  116,   516,   296,    16;
  1,  358,  3508,  5168,  1328,   32;
  1, 1086, 21120, 64240, 42960, 5664, 64;
  ...
		

Crossrefs

A142963 and this sequence can be mapped onto the A156920 triangle.
FP1 sequences A000340, A156922, A156923, A156924.
FP2 sequences A050488, A142965, A142966, A142968.
Appears in A162005, A000182, A162006 and A162007.
Cf. A185410 (row reverse), A185411.

Programs

  • Maple
    A156919 := proc(n,m) if n=m then 1; elif m=0 then 2^n ; elif m<0 or m>n then 0; else 2*(m+1)*procname(n-1,m)+(2*n-2*m+1)*procname(n-1,m-1) ; end if; end proc: seq(seq(A156919(n,m), m=0..n), n=0..7); # R. J. Mathar, Feb 03 2011
  • Mathematica
    g[0] = 1/Sqrt[1-x]; g[n_] := g[n] = 2x*D[g[n-1], x]; p[n_] := g[n] / g[0]^(2n+1) // Cancel; row[n_] := CoefficientList[p[n], x] // Rest; Table[row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Aug 09 2012, after Peter Bala *)
    Flatten[Table[Rest[CoefficientList[Nest[2 x D[#, x] &, (1 - x)^(-1/2), k] (1 - x)^(k + 1/2), x]], {k, 10}]] (* Jan Mangaldan, Mar 15 2013 *)

Formula

SF(z; n) = Sum_{m >= 1} m^(n-1)*4^(-m)*z^(m-1)*Gamma(2*m+1)/(Gamma(m)^2) = P(z;n) / (2^(n+1)*(1-z)^((2*n+3)/2)) for n >= 0. The polynomials P(z;n) = Sum_{k = 0..n} a(k)*z^k generate the a(n) sequence.
If we write the sequence as a triangle the following relation holds: T(n,m) = (2*m+2)*T(n-1,m) + (2*n-2*m+1)*T(n-1,m-1) with T(n,m=0) = 2^n and T(n,n) = 1, n >= 0 and 0 <= m <= n.
G.f.: 1/(1-xy-2x/(1-3xy/(1-4x/(1-5xy/(1-6x/(1-7xy/(1-8x/(1-... (continued fraction). - Paul Barry, Jan 26 2011
From Peter Bala, Apr 03 2011 (Start)
E.g.f.: exp(z*(x + 2)) * (1 - x)/(exp(2*x*z) - x*exp(2*z))^(3/2) = Sum_{n >= 0} P(x,n)*z^n/n! = 1 + (2 + x)*z + (4 + 10*x + x^2)*z^2/2! + (8 + 60*x + 36*x^2 + x^3)*z^3/3! + ... .
Explicit formula for the row polynomials:
P(x,n-1) = Sum_{k = 1..n} 2^(n-2*k)*binomial(2k,k)*k!*Stirling2(n,k)*x^(k-1)*(1 - x)^(n-k).
The polynomials x*(1 + x)^n * P(x/(x + 1),n) are the row polynomials of A187075.
The polynomials x^(n+1) * P((x + 1)/x,n) are the row polynomials of A186695.
Row sums are A001147(n+1). (End)
Sum_{k = 0..n} (-1)^k*T(n,k) = (-1)^binomial(n,2)*A012259(n+1). - Johannes W. Meijer, Sep 27 2011

Extensions

Minor edits from Johannes W. Meijer, Sep 27 2011

A124212 Expansion of e.g.f. exp(x)/sqrt(2-exp(2*x)).

Original entry on oeis.org

1, 2, 8, 56, 560, 7232, 114368, 2139776, 46223360, 1132124672, 30999600128, 938366468096, 31114518056960, 1121542540992512, 43664751042265088, 1826043989622358016, 81635676596544143360
Offset: 0

Views

Author

Karol A. Penson, Oct 19 2006

Keywords

Crossrefs

Programs

  • Maple
      N:= 60; # to get a(n) for n <= N
    S:= series(exp(x)/sqrt(2-exp(2*x)), x, N+1):
    seq(coeff(S,x,j), j=0..N); # Robert Israel, May 19 2014
  • Mathematica
    CoefficientList[Series[E^x/Sqrt[2-E^(2*x)]-1, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 03 2013 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=0,n,A=1+intformal(A+A^3)); n!*polcoeff(A,n)} \\ Paul D. Hanna, Oct 04 2008

Formula

E.g.f. satisfies: A'(x) = A(x) + A(x)^3 with A(0)=1. [From Paul D. Hanna, Oct 04 2008]
G.f.: 1/G(0) where G(k) = 1 - x*(4*k+2)/( 1 - 2*x*(k+1)/G(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Mar 23 2013
G.f.: 2/G(0), where G(k)= 1 + 1/(1 - x*(8*k+4)/(x*(8*k+4) - 1 + 4*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
a(n) ~ 2^(n+1/2)*n^n/(log(2)^(n+1/2)*exp(n)). - Vaclav Kotesovec, Jun 03 2013
From Peter Bala, Aug 30 2016: (Start)
a(n) = 1/sqrt(2) * Sum_{k >= 0} (1/8)^k*binomial(2*k,k)*(2*k + 1)^n = 1/sqrt(2) * Sum_{k >= 0} (-1/2)^k*binomial(-1/2,k)*(2*k + 1)^n. Cf. A176785, A124214 and A229558.
a(n) = Sum_{k = 0..n} (1/4)^k*binomial(2*k,k)*A145901(n,k).
a(n) = Sum_{k = 0..n} ( Sum_{i = 0..k} (-1)^(k-i)/4^k* binomial(2*k,k)*binomial(k,i)*(2*i + 1)^n ). (End)
a(n) = 2^n * A014307(n). - Seiichi Manyama, Nov 18 2023

Extensions

Definition corrected by Robert Israel, May 19 2014

A187075 A Galton triangle: T(n,k) = 2*k*T(n-1,k) + (2*k-1)*T(n-1,k-1).

Original entry on oeis.org

1, 2, 3, 4, 18, 15, 8, 84, 180, 105, 16, 360, 1500, 2100, 945, 32, 1488, 10800, 27300, 28350, 10395, 64, 6048, 72240, 294000, 529200, 436590, 135135, 128, 24384, 463680, 2857680, 7938000, 11060280, 7567560, 2027025, 256, 97920, 2904000, 26107200, 105099120, 220041360, 249729480, 145945800, 34459425
Offset: 1

Views

Author

Peter Bala, Mar 27 2011

Keywords

Comments

This is a companion triangle to A186695.
Let f(x) = (exp(2*x) + 1)^(-1/2); then the n-th derivative of f equals Sum_{k=1..n} (-1)^k*T(n,k)*(f(x))^(2*k+1). - Groux Roland, May 17 2011
Triangle T(n,k), 1 <= k <= n, given by (0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, ...) DELTA (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 20 2013

Examples

			Triangle begins
n\k.|...1.....2......3......4......5......6
===========================================
..1.|...1
..2.|...2.....3
..3.|...4....18.....15
..4.|...8....84....180....105
..5.|..16...360...1500...2100....945
..6.|..32..1488..10800..27300..28350..10395
..
Examples of recurrence relation:
T(4,3) = 6*T(3,3) + 5*T(3,2) = 6*15 + 5*18 = 180;
T(6,4) = 8*T(5,4) + 7*T(5,3) = 8*2100 + 7*1500 = 27300.
		

Crossrefs

Programs

  • Maple
    A187075 := proc(n, k) option remember; if k < 1 or k > n then 0; elif k = 1 then 2^(n-1); else 2*k*procname(n-1, k) + (2*k-1)*procname(n-1, k-1) ; end if; end proc:seq(seq(A187075(n,k),k = 1..n),n = 1..10);
  • Mathematica
    Flatten[Table[2^(n - 2*k)*Binomial[2 k, k]*k!*StirlingS2[n, k], {n, 10}, {k, 1, n}]] (* G. C. Greubel, Jun 17 2016 *)
  • Sage
    # uses[delehamdelta from A084938]
    # Adds a first column (1,0,0,0, ...).
    def A187075_triangle(n):
        return delehamdelta([(i+1)*int(is_even(i+1)) for i in (0..n)], [i+1 for i in (0..n)])
    A187075_triangle(4)  # Peter Luschny, Oct 20 2013

Formula

T(n,k) = 2^(n-2*k)*binomial(2k,k)*k!*Stirling2(n,k).
Recurrence relation T(n,k) = 2*k*T(n-1,k) + (2*k-1)*T(n-1,k-1) with boundary conditions T(1,1) = 1, T(1,k) = 0 for k >= 2.
G.f.: F(x,t) = 1/sqrt((1+x)-x*exp(2*t)) - 1 = Sum_{n >= 1} R(n,x)*t^n/n! = x*t + (2*x+3*x^2)*t^2/2! + (4*x+18*x^2+15*x^3)*t^3/3! + ....
The g.f. F(x,t) satisfies the partial differential equation dF/dt = 2*(x+x^2)*dF/dx + x*F.
The row polynomials R(n,x) satisfy the recursion R(n+1,x) = 2*(x+x^2)*R'(n,x) + x*R(n,x) where ' indicates differentiation with respect to x.
O.g.f. for column k: (2k-1)!!*x^k/Product_{m = 1..k} (1-2*m*x) (compare with A075497). T(n,k) = (2*k-1)!!*A075497(n,k).
The row polynomials R(n,x) = Sum_{k = 1..n} T(n,k)*x^k satisfy R(n,-x-1) = (-1)^n*(1+x)/x*P(n,x) where P(n,x) is the n-th row polynomial of A186695. We also have R(n,x/(1-x)) = (x/(1-x)^n)*Q(n-1,x) where Q(n,x) is the n-th row polynomial of A156919.
T(n,k) = 2^(n-k)*A211608(n,k). - Philippe Deléham, Oct 20 2013

A185410 A decomposition of the double factorials A001147.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 10, 4, 0, 1, 36, 60, 8, 0, 1, 116, 516, 296, 16, 0, 1, 358, 3508, 5168, 1328, 32, 0, 1, 1086, 21120, 64240, 42960, 5664, 64, 0, 1, 3272, 118632, 660880, 900560, 320064, 23488, 128, 0, 1, 9832, 638968, 6049744, 14713840, 10725184, 2225728, 95872, 256, 0
Offset: 0

Views

Author

Paul Barry, Jan 26 2011

Keywords

Comments

Row sums are A001147. Reversal of A185411.
From Peter Bala, Jul 24 2012: (Start)
This is the case k = 2 of the 1/k—Eulerian polynomials introduced by Savage and Viswanathan. They give a combinatorial interpretation of the triangle in terms of an ascent statistic on sets of inversion sequences and a geometric interpretation in terms of lecture hall polytopes.
Row reverse of A156919.
(End)
Triangle T(n,k), 0<=k<=n, given by (1, 0, 3, 0, 5, 0, 7, 0, 9, 0, ...) DELTA (0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 12 2013

Examples

			Triangle begins:
  1,
  1,    0,
  1,    2,      0,
  1,   10,      4,       0,
  1,   36,     60,       8,        0,
  1,  116,    516,     296,       16,        0,
  1,  358,   3508,    5168,     1328,       32,       0,
  1, 1086,  21120,   64240,    42960,     5664,      64,     0,
  1, 3272, 118632,  660880,   900560,   320064,   23488,   128,   0,
  1, 9832, 638968, 6049744, 14713840, 10725184, 2225728, 95872, 256, 0,
  ...
In the Savage-Viswanathan paper, the coefficients appear as
  1
  1    2
  1   10     4
  1   36    60     8
  1  116   516   296    16
  1  358  3508  5168  1328   32
  1 1086 21120 64240 42960 5664 64
  ...
		

Crossrefs

Cf. A156919, A001147 (row sums), A112857, A173018, A186695, A202038 (alt. row sums).

Programs

  • Mathematica
    T[0, 0] := 1;  T[n_, -1] := 0;  T[n_, n_] := 0; T[n_, k_] := T[n, k] = (n - k)*T[n - 1, k - 1] + (2*k + 1)*T[n - 1, k]; Join[{1}, Table[If[k < 0, 0, If[k >= n, 0, 2^k*T[n, k]]], {n, 1, 5}, {k, 0, n}] // Flatten] (* G. C. Greubel, Jun 30 2017 *)

Formula

G.f.: 1/(1-x/(1-2xy/(1-3x/(1-4xy/(1-5x/(1-6xy/(1-7x/(1-8xy/(1- .... (continued fraction).
From Peter Bala, Jul 24 2012: (Start)
T(n,k) = sum {j=0..k}(-1)^(k-j)/4^j*C(n+1/2,k-j)*C(2*j,j)*(2*j+1)^n.
Recurrence equation: T(n+1,k) = (2*k+1)*T(n,k) + 2*(n-k+1)*T(n,k-1).
E.g.f.: sqrt(E(x,2*z)) = 1 + z + (1+2*x)*z^2/2! + (1+10*x+4*x^2)*z^3/3! + ..., where E(x,z) = (1-x)/(exp(z*(x-1)) - x) is the e.g.f. for the Eulerian numbers (version A173018). Cf. A156919.
Row polynomial R(n,x) = sum {k = 1..n} 2^(n-2*k)*C(2*k,k)*k!*Stirling2(n,k)*(x-1)^(n-k). R(n,4*x)/(1-4*x)^(n+1/2) = sum {k>=0} C(2*k,k)*(2*k+1)^n*x^k. The sequence of rational functions x*R(n,x)/(1-x)^(n+1) conjecturally occurs in the first column of (I - x*A112857)^(-1). (1+x)^(n-1)*R(n,x/(x+1)) gives the n-th row polynomial of A186695.
Row sums A001147. Alt. row sums A202038. (End)
T(n,k) = 2^k*A102365(n,k). - Philippe Deléham, Feb 12 2013
Showing 1-4 of 4 results.