cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A156919 Table of coefficients of polynomials related to the Dirichlet eta function.

Original entry on oeis.org

1, 2, 1, 4, 10, 1, 8, 60, 36, 1, 16, 296, 516, 116, 1, 32, 1328, 5168, 3508, 358, 1, 64, 5664, 42960, 64240, 21120, 1086, 1, 128, 23488, 320064, 900560, 660880, 118632, 3272, 1, 256, 95872, 2225728
Offset: 0

Views

Author

Johannes W. Meijer, Feb 20 2009, Jun 24 2009

Keywords

Comments

Essentially the same as A185411. Row reverse of A185410. - Peter Bala, Jul 24 2012
The SF(z; n) formulas, see below, were discovered while studying certain properties of the Dirichlet eta function.
From Peter Bala, Apr 03 2011: (Start)
Let D be the differential operator 2*x*d/dx. The row polynomials of this table come from repeated application of the operator D to the function g(x) = 1/sqrt(1 - x). For example,
D(g) = x*g^3
D^2(g) = x*(2 + x)*g^5
D^3(g) = x*(4 + 10*x + x^2)*g^7
D^4(g) = x*(8 + 60*x + 36*x^2 + x^3)*g^9.
Thus this triangle is analogous to the triangle of Eulerian numbers A008292, whose row polynomials come from the repeated application of the operator x*d/dx to the function 1/(1 - x). (End)

Examples

			The first few rows of the triangle are:
  [1]
  [2, 1]
  [4, 10, 1]
  [8, 60, 36, 1]
  [16, 296, 516, 116, 1]
The first few P(z;n) are:
  P(z; n=0) = 1
  P(z; n=1) = 2 + z
  P(z; n=2) = 4 + 10*z + z^2
  P(z; n=3) = 8 + 60*z + 36*z^2 + z^3
The first few SF(z;n) are:
  SF(z; n=0) = (1/2)*(1)/(1-z)^(3/2);
  SF(z; n=1) = (1/4)*(2+z)/(1-z)^(5/2);
  SF(z; n=2) = (1/8)*(4+10*z+z^2)/(1-z)^(7/2);
  SF(z; n=3) = (1/16)*(8+60*z+36*z^2+z^3)/(1-z)^(9/2);
In the Savage-Viswanathan paper, the coefficients appear as
  1;
  1,    2;
  1,   10,     4;
  1,   36,    60,     8;
  1,  116,   516,   296,    16;
  1,  358,  3508,  5168,  1328,   32;
  1, 1086, 21120, 64240, 42960, 5664, 64;
  ...
		

Crossrefs

A142963 and this sequence can be mapped onto the A156920 triangle.
FP1 sequences A000340, A156922, A156923, A156924.
FP2 sequences A050488, A142965, A142966, A142968.
Appears in A162005, A000182, A162006 and A162007.
Cf. A185410 (row reverse), A185411.

Programs

  • Maple
    A156919 := proc(n,m) if n=m then 1; elif m=0 then 2^n ; elif m<0 or m>n then 0; else 2*(m+1)*procname(n-1,m)+(2*n-2*m+1)*procname(n-1,m-1) ; end if; end proc: seq(seq(A156919(n,m), m=0..n), n=0..7); # R. J. Mathar, Feb 03 2011
  • Mathematica
    g[0] = 1/Sqrt[1-x]; g[n_] := g[n] = 2x*D[g[n-1], x]; p[n_] := g[n] / g[0]^(2n+1) // Cancel; row[n_] := CoefficientList[p[n], x] // Rest; Table[row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Aug 09 2012, after Peter Bala *)
    Flatten[Table[Rest[CoefficientList[Nest[2 x D[#, x] &, (1 - x)^(-1/2), k] (1 - x)^(k + 1/2), x]], {k, 10}]] (* Jan Mangaldan, Mar 15 2013 *)

Formula

SF(z; n) = Sum_{m >= 1} m^(n-1)*4^(-m)*z^(m-1)*Gamma(2*m+1)/(Gamma(m)^2) = P(z;n) / (2^(n+1)*(1-z)^((2*n+3)/2)) for n >= 0. The polynomials P(z;n) = Sum_{k = 0..n} a(k)*z^k generate the a(n) sequence.
If we write the sequence as a triangle the following relation holds: T(n,m) = (2*m+2)*T(n-1,m) + (2*n-2*m+1)*T(n-1,m-1) with T(n,m=0) = 2^n and T(n,n) = 1, n >= 0 and 0 <= m <= n.
G.f.: 1/(1-xy-2x/(1-3xy/(1-4x/(1-5xy/(1-6x/(1-7xy/(1-8x/(1-... (continued fraction). - Paul Barry, Jan 26 2011
From Peter Bala, Apr 03 2011 (Start)
E.g.f.: exp(z*(x + 2)) * (1 - x)/(exp(2*x*z) - x*exp(2*z))^(3/2) = Sum_{n >= 0} P(x,n)*z^n/n! = 1 + (2 + x)*z + (4 + 10*x + x^2)*z^2/2! + (8 + 60*x + 36*x^2 + x^3)*z^3/3! + ... .
Explicit formula for the row polynomials:
P(x,n-1) = Sum_{k = 1..n} 2^(n-2*k)*binomial(2k,k)*k!*Stirling2(n,k)*x^(k-1)*(1 - x)^(n-k).
The polynomials x*(1 + x)^n * P(x/(x + 1),n) are the row polynomials of A187075.
The polynomials x^(n+1) * P((x + 1)/x,n) are the row polynomials of A186695.
Row sums are A001147(n+1). (End)
Sum_{k = 0..n} (-1)^k*T(n,k) = (-1)^binomial(n,2)*A012259(n+1). - Johannes W. Meijer, Sep 27 2011

Extensions

Minor edits from Johannes W. Meijer, Sep 27 2011

A185411 A triangular decomposition of the double factorial numbers A001147.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 4, 10, 1, 0, 8, 60, 36, 1, 0, 16, 296, 516, 116, 1, 0, 32, 1328, 5168, 3508, 358, 1, 0, 64, 5664, 42960, 64240, 21120, 1086, 1, 0, 128, 23488, 320064, 900560, 660880, 118632, 3272, 1, 0, 256, 95872, 2225728, 10725184, 14713840, 6049744, 638968, 9832, 1
Offset: 0

Views

Author

Paul Barry, Jan 26 2011

Keywords

Comments

Row sums are A001147. Reversal of A185410. Contains A156919 as submatrix.
Row n counts perfect matchings of [2n] by number of matches in which the smaller entry is odd. For example, T(2,1)=2 counts 13/24, 14/23, in each of which only the first matching pair has an odd smaller entry. Outline proof. Consider the map on perfect matchings of [2n] given by "delete the entries n and n-1 and, if they were not originally matched to each other, match up their now-unmatched partners". Consideration of this map and its effect on the statistic "number of matches in which the smaller entry is odd" yields the Mathematica recurrence below. - David Callan, Dec 13 2011
Triangle T(n,k), 0 <= k <= n, given by (0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, ...) DELTA (1, 0, 3, 0, 5, 0, 7, 0, 9, 11, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 12 2013
T(n,k), 0 <= k <= n, is the number of signed permutations of [n] that are products of balanced cycles (i.e., cuspidal elements of the type B Coxeter group) and have excedance number of type B equal to k. - Jose Bastidas, Jul 05 2023

Examples

			Triangle T(n,k) begins:
  1;
  0,   1;
  0,   2,     1;
  0,   4,    10,       1;
  0,   8,    60,      36,        1;
  0,  16,   296,     516,      116,        1;
  0,  32,  1328,    5168,     3508,      358,       1;
  0,  64,  5664,   42960,    64240,    21120,    1086,      1;
  0, 128, 23488,  320064,   900560,   660880,  118632,   3272,    1;
  0, 256, 95872, 2225728, 10725184, 14713840, 6049744, 638968, 9832, 1;
  ...
		

Crossrefs

Columns 0-1 give: A000007, A131577.
Cf. A001147, A185410, A156919 (another version).

Programs

  • Mathematica
    u[n_, 0] := If[n==0, 1, 0]; u[n_, m_] /; m==1 := 2^(n - 1); u[n_, m_] /; m==n>=1 := 1; u[n_, m_] /; 1David Callan, Dec 13 2011 *)

Formula

G.f.: 1/(1-xy/(1-2x/(1-3xy/(1-4x/(1-5xy/(1-6x/(1-7xy/(1- ... (continued fraction).
T(n,k) = (2n-2k+1)*T(n-1,k-1) + 2k*T(n-1,k), T(0,0) = 1, T(n,k) = 0 if k < 0 or k > n. - Philippe Deléham, Feb 12 2013
T(n,k) = 2^(n-k)*A211399(n,k). - Philippe Deléham, Feb 12 2013

Extensions

Sequence terms corrected by Paul Barry, Jan 27 2011

A256978 Irregular triangle read by rows: coefficients of polynomials related to Stirling permutations.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 7, 3, 1, 1, 7, 29, 31, 29, 7, 1, 1, 15, 101, 195, 321, 195, 101, 15, 1, 1, 31, 327, 1001, 2507, 2661, 2507, 1001, 327, 31, 1, 1, 63, 1023, 4641, 16479, 26481, 37759, 26481, 16479, 4641, 1023, 63, 1, 1, 127, 3145, 20343, 98289, 221775, 439105, 461455, 439105, 221775, 98289, 20343, 3145, 127, 1
Offset: 1

Views

Author

N. J. A. Sloane, Apr 23 2015

Keywords

Examples

			Triangle begins:
  n\k | 1   2   3    4    5    6    7    8   9  10  11
  ----+-----------------------------------------------
    1 | 1
    2 | 1   1   1
    3 | 1   3   7    3    1
    4 | 1   7  29   31   29    7    1
    5 | 1  15 101  195  321  195  101   15   1
    6 | 1  31 327 1001 2507 2661 2507 1001 327  31   1
    ...
		

Crossrefs

Cf. A185410.

Programs

  • Maxima
    gf : taylor((exp(z*(x - 1)*(x + 1)) + x)/(x + 1)*sqrt((1 - x^2)/(exp(2*z*(x - 1)*(x + 1)) - x^2)) - 1, z, 0, 50)$
    row(x, n) := n!*ratcoef(gf, z, n)$
    create_list(ratcoef(row(x, n), x, k), n, 1, 20, k, 1, hipow(row(x, n), x));
    /* Franck Maminirina Ramaharo, Feb 05 2019 */

Formula

E.g.f.: (exp(z*(x - 1)*(x + 1)) + x)/(x + 1)*sqrt((1 - x^2)/(exp(2*z*(x - 1)*(x + 1)) - x^2)) - 1. - Franck Maminirina Ramaharo, Feb 05 2019

Extensions

More terms from Franck Maminirina Ramaharo, Feb 05 2019
Showing 1-3 of 3 results.