cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A156919 Table of coefficients of polynomials related to the Dirichlet eta function.

Original entry on oeis.org

1, 2, 1, 4, 10, 1, 8, 60, 36, 1, 16, 296, 516, 116, 1, 32, 1328, 5168, 3508, 358, 1, 64, 5664, 42960, 64240, 21120, 1086, 1, 128, 23488, 320064, 900560, 660880, 118632, 3272, 1, 256, 95872, 2225728
Offset: 0

Views

Author

Johannes W. Meijer, Feb 20 2009, Jun 24 2009

Keywords

Comments

Essentially the same as A185411. Row reverse of A185410. - Peter Bala, Jul 24 2012
The SF(z; n) formulas, see below, were discovered while studying certain properties of the Dirichlet eta function.
From Peter Bala, Apr 03 2011: (Start)
Let D be the differential operator 2*x*d/dx. The row polynomials of this table come from repeated application of the operator D to the function g(x) = 1/sqrt(1 - x). For example,
D(g) = x*g^3
D^2(g) = x*(2 + x)*g^5
D^3(g) = x*(4 + 10*x + x^2)*g^7
D^4(g) = x*(8 + 60*x + 36*x^2 + x^3)*g^9.
Thus this triangle is analogous to the triangle of Eulerian numbers A008292, whose row polynomials come from the repeated application of the operator x*d/dx to the function 1/(1 - x). (End)

Examples

			The first few rows of the triangle are:
  [1]
  [2, 1]
  [4, 10, 1]
  [8, 60, 36, 1]
  [16, 296, 516, 116, 1]
The first few P(z;n) are:
  P(z; n=0) = 1
  P(z; n=1) = 2 + z
  P(z; n=2) = 4 + 10*z + z^2
  P(z; n=3) = 8 + 60*z + 36*z^2 + z^3
The first few SF(z;n) are:
  SF(z; n=0) = (1/2)*(1)/(1-z)^(3/2);
  SF(z; n=1) = (1/4)*(2+z)/(1-z)^(5/2);
  SF(z; n=2) = (1/8)*(4+10*z+z^2)/(1-z)^(7/2);
  SF(z; n=3) = (1/16)*(8+60*z+36*z^2+z^3)/(1-z)^(9/2);
In the Savage-Viswanathan paper, the coefficients appear as
  1;
  1,    2;
  1,   10,     4;
  1,   36,    60,     8;
  1,  116,   516,   296,    16;
  1,  358,  3508,  5168,  1328,   32;
  1, 1086, 21120, 64240, 42960, 5664, 64;
  ...
		

Crossrefs

A142963 and this sequence can be mapped onto the A156920 triangle.
FP1 sequences A000340, A156922, A156923, A156924.
FP2 sequences A050488, A142965, A142966, A142968.
Appears in A162005, A000182, A162006 and A162007.
Cf. A185410 (row reverse), A185411.

Programs

  • Maple
    A156919 := proc(n,m) if n=m then 1; elif m=0 then 2^n ; elif m<0 or m>n then 0; else 2*(m+1)*procname(n-1,m)+(2*n-2*m+1)*procname(n-1,m-1) ; end if; end proc: seq(seq(A156919(n,m), m=0..n), n=0..7); # R. J. Mathar, Feb 03 2011
  • Mathematica
    g[0] = 1/Sqrt[1-x]; g[n_] := g[n] = 2x*D[g[n-1], x]; p[n_] := g[n] / g[0]^(2n+1) // Cancel; row[n_] := CoefficientList[p[n], x] // Rest; Table[row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Aug 09 2012, after Peter Bala *)
    Flatten[Table[Rest[CoefficientList[Nest[2 x D[#, x] &, (1 - x)^(-1/2), k] (1 - x)^(k + 1/2), x]], {k, 10}]] (* Jan Mangaldan, Mar 15 2013 *)

Formula

SF(z; n) = Sum_{m >= 1} m^(n-1)*4^(-m)*z^(m-1)*Gamma(2*m+1)/(Gamma(m)^2) = P(z;n) / (2^(n+1)*(1-z)^((2*n+3)/2)) for n >= 0. The polynomials P(z;n) = Sum_{k = 0..n} a(k)*z^k generate the a(n) sequence.
If we write the sequence as a triangle the following relation holds: T(n,m) = (2*m+2)*T(n-1,m) + (2*n-2*m+1)*T(n-1,m-1) with T(n,m=0) = 2^n and T(n,n) = 1, n >= 0 and 0 <= m <= n.
G.f.: 1/(1-xy-2x/(1-3xy/(1-4x/(1-5xy/(1-6x/(1-7xy/(1-8x/(1-... (continued fraction). - Paul Barry, Jan 26 2011
From Peter Bala, Apr 03 2011 (Start)
E.g.f.: exp(z*(x + 2)) * (1 - x)/(exp(2*x*z) - x*exp(2*z))^(3/2) = Sum_{n >= 0} P(x,n)*z^n/n! = 1 + (2 + x)*z + (4 + 10*x + x^2)*z^2/2! + (8 + 60*x + 36*x^2 + x^3)*z^3/3! + ... .
Explicit formula for the row polynomials:
P(x,n-1) = Sum_{k = 1..n} 2^(n-2*k)*binomial(2k,k)*k!*Stirling2(n,k)*x^(k-1)*(1 - x)^(n-k).
The polynomials x*(1 + x)^n * P(x/(x + 1),n) are the row polynomials of A187075.
The polynomials x^(n+1) * P((x + 1)/x,n) are the row polynomials of A186695.
Row sums are A001147(n+1). (End)
Sum_{k = 0..n} (-1)^k*T(n,k) = (-1)^binomial(n,2)*A012259(n+1). - Johannes W. Meijer, Sep 27 2011

Extensions

Minor edits from Johannes W. Meijer, Sep 27 2011

A202038 Hafnian of a +/-1 array.

Original entry on oeis.org

1, -1, -1, 5, 17, -121, -721, 6845, 58337, -698161, -7734241, 111973685, 1526099057, -25947503401, -419784870961, 8200346492525, 153563504618177, -3389281372287841, -72104198836466881, 1774459993676715365, 42270463533824671697, -1147649139272698443481
Offset: 0

Views

Author

David Callan, Dec 13 2011

Keywords

Comments

a(n) is the Hafnian of the triangular array (a(i,j)){1<=i<j<=2n} defined by a(i,j) = (-1)^i. The Hafnian is the same as the Pfaffian except without the alternating signs, that is, the Hafnian of the upper triangular array (a(i,j)){1<=i
a(n) is also the total weight of Dyck n-paths with the weight of a Dyck path defined as (-1)^(sum of the upstep heights) times the product of the upstep heights. For example, the Dyck 4-path P = UUDUUDDD has upsteps ending at heights 1,2,2,3 respectively and so weight(P) = (-1)^8 times (1*2*2*3) = +12.

Crossrefs

Absolute values give A012259. Alternating row sums of A185411.

Programs

  • Mathematica
    u[n_, 0] := If[n==0, 1, 0]; u[n_, m_] /; m==1 := 2^(n - 1); u[n_, m_] /; m==n>=1 := 1; u[n_, m_] /; 1Vaclav Kotesovec, Mar 09 2016, after Vladimir Kruchinin *)
  • Maxima
    a(n):=if n=0 then 1 else 4^(n-1)*sum(((-1)^(k+1)*(k+1)!*binomial(2*k+2,k+1)*stirling2(n,k+1))/2^(3*k+1),k,0,n-1); /* Vladimir Kruchinin, Mar 09 2016 */

Formula

E.g.f.: sqrt(2/(1 + exp(4*x))).
G.f.: 1/(1 + x/(1 - 2 x/(1 + 3 x /(1 - 4 x/(1 + 5 x /(1 - 6 x/ (1 + ...))))))) (continued fraction).
G.f.: 1/G(0) where G(k) = 1 + x*(2*k+1)/(1 - (2*k+2)*x/G(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Aug 11 2012
G.f.: 1/(U(0) + x) where U(k) = 1 + x*(2*k+1)*(2*k+2) - x*(2*k+1)*(2*k+2)/(1 + x/U(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Oct 13 2012
G.f.: 1/U(0) where U(k) = 1 + x + x^2*(2*k+1)*(2*k+2)/U(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 13 2012
a(n) ~ (cos(n*Pi/2)-sin(n*Pi/2)) * 2^(2*n+3/2) *n^n / (Pi^(n+1/2) * exp(n)). - Vaclav Kotesovec, Oct 08 2013
G.f.: T(0)/(1+x), where T(k) = 1 - x^2*(2*k+1)*(2*k+2)/( x^2*(2*k+1)*(2*k+2) + (1+x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 22 2013
a(n) = 4^(n-1)*Sum_{k=0..n-1} (((-1)^(k+1) * (k+1)! * binomial(2*k+2, k+1) * stirling2(n, k+1)) / 2^(3*k+1)), n>0, a(0)=1. - Vladimir Kruchinin, Mar 09 2016

A012259 Expansion of e.g.f. exp(arctanh(tan(x))).

Original entry on oeis.org

1, 1, 1, 5, 17, 121, 721, 6845, 58337, 698161, 7734241, 111973685, 1526099057, 25947503401, 419784870961, 8200346492525, 153563504618177, 3389281372287841, 72104198836466881, 1774459993676715365, 42270463533824671697, 1147649139272698443481
Offset: 0

Author

Patrick Demichel (patrick.demichel(AT)hp.com)

Keywords

Examples

			 exp(arctanh(tan(x))) = 1 + x + x^2/2! + 5*x^3/3! + 17*x^4/4! + 121*x^5/5! + ...
		

Crossrefs

Cf. A012077, A012085, A185411, A202038 (signed version).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Sqrt((1+Tan(x))/(1-Tan(x))) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 06 2019
    
  • Mathematica
    With[{nn=30}, CoefficientList[Series[Sqrt[(1+Tan[x])/(1-Tan[x])], {x, 0, nn}], x]*Range[0,nn]!] (* Vaclav Kotesovec, Oct 23 2013 *)
  • PARI
    {a(n)=local(A=1); for(i=0, n, A = exp( intformal( (A^2 + subst(A^2, x, -x))/2 +x*O(x^n)) )); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Feb 04 2017
    
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( sqrt((1+tan(x))/(1-tan(x))) )) \\ G. C. Greubel, Jun 06 2019
    
  • Sage
    m = 30; T = taylor(sqrt((1+tan(x))/(1-tan(x))), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Jun 06 2019

Formula

Alternative form of e.g.f: sqrt(sec(2*x) + tan(2*x)) = 1 + x + x^2/2! + 5*x^3/3! + 17*x^4/4! + ... (where sec(x)=1/cos(x)). - Peter Bala, Jan 11 2011
a(n) = 2^n*Z(n,1/2), where Z(n,x) is the n-th zigzag polynomial as defined in A147309.
Put y = x*log(x)/4. The connection between the expansion sqrt(2/(1+x^x)) = 1 - y - y^2/2! + 5*y^3/3! + 17*y^4/4! - 121*y^5/5! ... and the present sequence is explained in the answer to Mathematics Stack Exchange Question 6939. - Peter Bala, Jul 10 2011
exp(arctanh(tan(x))) = sqrt( (1 + tan(x))/(1 - tan(x) ) ) = sqrt( tan(x+pi/4) ). - David Callan, Dec 13 2011
a(n) ~ 2^(2*n+3/2) * n^n / (Pi^(n+1/2) * exp(n)). - Vaclav Kotesovec, Oct 23 2013
E.g.f. A(x) satisfies: A(x) = exp( Integral (A(x)^2 + A(-x)^2)/2 dx ). - Paul D. Hanna, Feb 04 2017
E.g.f. A(x) satisfies: A'(x) = A(x) * (A(x)^2 + A(-x)^2)/2. - Paul D. Hanna, Feb 04 2017

A185410 A decomposition of the double factorials A001147.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 10, 4, 0, 1, 36, 60, 8, 0, 1, 116, 516, 296, 16, 0, 1, 358, 3508, 5168, 1328, 32, 0, 1, 1086, 21120, 64240, 42960, 5664, 64, 0, 1, 3272, 118632, 660880, 900560, 320064, 23488, 128, 0, 1, 9832, 638968, 6049744, 14713840, 10725184, 2225728, 95872, 256, 0
Offset: 0

Author

Paul Barry, Jan 26 2011

Keywords

Comments

Row sums are A001147. Reversal of A185411.
From Peter Bala, Jul 24 2012: (Start)
This is the case k = 2 of the 1/k—Eulerian polynomials introduced by Savage and Viswanathan. They give a combinatorial interpretation of the triangle in terms of an ascent statistic on sets of inversion sequences and a geometric interpretation in terms of lecture hall polytopes.
Row reverse of A156919.
(End)
Triangle T(n,k), 0<=k<=n, given by (1, 0, 3, 0, 5, 0, 7, 0, 9, 0, ...) DELTA (0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 12 2013

Examples

			Triangle begins:
  1,
  1,    0,
  1,    2,      0,
  1,   10,      4,       0,
  1,   36,     60,       8,        0,
  1,  116,    516,     296,       16,        0,
  1,  358,   3508,    5168,     1328,       32,       0,
  1, 1086,  21120,   64240,    42960,     5664,      64,     0,
  1, 3272, 118632,  660880,   900560,   320064,   23488,   128,   0,
  1, 9832, 638968, 6049744, 14713840, 10725184, 2225728, 95872, 256, 0,
  ...
In the Savage-Viswanathan paper, the coefficients appear as
  1
  1    2
  1   10     4
  1   36    60     8
  1  116   516   296    16
  1  358  3508  5168  1328   32
  1 1086 21120 64240 42960 5664 64
  ...
		

Crossrefs

Cf. A156919, A001147 (row sums), A112857, A173018, A186695, A202038 (alt. row sums).

Programs

  • Mathematica
    T[0, 0] := 1;  T[n_, -1] := 0;  T[n_, n_] := 0; T[n_, k_] := T[n, k] = (n - k)*T[n - 1, k - 1] + (2*k + 1)*T[n - 1, k]; Join[{1}, Table[If[k < 0, 0, If[k >= n, 0, 2^k*T[n, k]]], {n, 1, 5}, {k, 0, n}] // Flatten] (* G. C. Greubel, Jun 30 2017 *)

Formula

G.f.: 1/(1-x/(1-2xy/(1-3x/(1-4xy/(1-5x/(1-6xy/(1-7x/(1-8xy/(1- .... (continued fraction).
From Peter Bala, Jul 24 2012: (Start)
T(n,k) = sum {j=0..k}(-1)^(k-j)/4^j*C(n+1/2,k-j)*C(2*j,j)*(2*j+1)^n.
Recurrence equation: T(n+1,k) = (2*k+1)*T(n,k) + 2*(n-k+1)*T(n,k-1).
E.g.f.: sqrt(E(x,2*z)) = 1 + z + (1+2*x)*z^2/2! + (1+10*x+4*x^2)*z^3/3! + ..., where E(x,z) = (1-x)/(exp(z*(x-1)) - x) is the e.g.f. for the Eulerian numbers (version A173018). Cf. A156919.
Row polynomial R(n,x) = sum {k = 1..n} 2^(n-2*k)*C(2*k,k)*k!*Stirling2(n,k)*(x-1)^(n-k). R(n,4*x)/(1-4*x)^(n+1/2) = sum {k>=0} C(2*k,k)*(2*k+1)^n*x^k. The sequence of rational functions x*R(n,x)/(1-x)^(n+1) conjecturally occurs in the first column of (I - x*A112857)^(-1). (1+x)^(n-1)*R(n,x/(x+1)) gives the n-th row polynomial of A186695.
Row sums A001147. Alt. row sums A202038. (End)
T(n,k) = 2^k*A102365(n,k). - Philippe Deléham, Feb 12 2013

A211399 Triangle T(n,k), 0 <= k <= n, given by (0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, ...) DELTA (1, 0, 3, 0, 5, 0, 7, 0, 9, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 5, 1, 0, 1, 15, 18, 1, 0, 1, 37, 129, 58, 1, 0, 1, 83, 646, 877, 179, 1, 0, 1, 177, 2685, 8030, 5280, 543, 1, 0, 1, 367, 10002, 56285, 82610, 29658, 1636, 1, 0, 1, 749, 34777, 335162
Offset: 0

Author

Philippe Deléham, Feb 08 2013

Keywords

Comments

Contains A156920 as submatrix.
Row-reversal of A102365. - Philippe Deléham, Feb 12 2013

Examples

			Triangle begins :
1
0, 1
0, 1, 1
0, 1, 5, 1
0, 1, 15, 18, 1
0, 1, 37, 129, 58, 1
0, 1, 83, 646, 877, 179, 1
		

Crossrefs

Left hand column sequences: A000007, A000012, A050488, A142965, A142966, A142968.
Right hand column sequences: A000340, A156922, A156923, A156924.
Row sums A014307(n).

Formula

T(n,k) = k*T(n-1,k) + (2n-2k+1)*T(n-1,k-1) , T(n,n) = 1, T(n,k) = 0 if k<0 or if k>n.
T(n,k) = A185411(n,k)/(2^(n-k)).
Sum_{k, 0<=k<=n} T(n,k)*x^(n-k) = A000012(n), A014307(n), A001147(n) for x = 0, 1, 2 respectively .
G.f.: 1/(1-xy/(1-x/(1-3xy/(1-2x/(1-5xy/(1-3x/(1-7xy/(1- ...(continued fraction).
Showing 1-5 of 5 results.