cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A156919 Table of coefficients of polynomials related to the Dirichlet eta function.

Original entry on oeis.org

1, 2, 1, 4, 10, 1, 8, 60, 36, 1, 16, 296, 516, 116, 1, 32, 1328, 5168, 3508, 358, 1, 64, 5664, 42960, 64240, 21120, 1086, 1, 128, 23488, 320064, 900560, 660880, 118632, 3272, 1, 256, 95872, 2225728
Offset: 0

Views

Author

Johannes W. Meijer, Feb 20 2009, Jun 24 2009

Keywords

Comments

Essentially the same as A185411. Row reverse of A185410. - Peter Bala, Jul 24 2012
The SF(z; n) formulas, see below, were discovered while studying certain properties of the Dirichlet eta function.
From Peter Bala, Apr 03 2011: (Start)
Let D be the differential operator 2*x*d/dx. The row polynomials of this table come from repeated application of the operator D to the function g(x) = 1/sqrt(1 - x). For example,
D(g) = x*g^3
D^2(g) = x*(2 + x)*g^5
D^3(g) = x*(4 + 10*x + x^2)*g^7
D^4(g) = x*(8 + 60*x + 36*x^2 + x^3)*g^9.
Thus this triangle is analogous to the triangle of Eulerian numbers A008292, whose row polynomials come from the repeated application of the operator x*d/dx to the function 1/(1 - x). (End)

Examples

			The first few rows of the triangle are:
  [1]
  [2, 1]
  [4, 10, 1]
  [8, 60, 36, 1]
  [16, 296, 516, 116, 1]
The first few P(z;n) are:
  P(z; n=0) = 1
  P(z; n=1) = 2 + z
  P(z; n=2) = 4 + 10*z + z^2
  P(z; n=3) = 8 + 60*z + 36*z^2 + z^3
The first few SF(z;n) are:
  SF(z; n=0) = (1/2)*(1)/(1-z)^(3/2);
  SF(z; n=1) = (1/4)*(2+z)/(1-z)^(5/2);
  SF(z; n=2) = (1/8)*(4+10*z+z^2)/(1-z)^(7/2);
  SF(z; n=3) = (1/16)*(8+60*z+36*z^2+z^3)/(1-z)^(9/2);
In the Savage-Viswanathan paper, the coefficients appear as
  1;
  1,    2;
  1,   10,     4;
  1,   36,    60,     8;
  1,  116,   516,   296,    16;
  1,  358,  3508,  5168,  1328,   32;
  1, 1086, 21120, 64240, 42960, 5664, 64;
  ...
		

Crossrefs

A142963 and this sequence can be mapped onto the A156920 triangle.
FP1 sequences A000340, A156922, A156923, A156924.
FP2 sequences A050488, A142965, A142966, A142968.
Appears in A162005, A000182, A162006 and A162007.
Cf. A185410 (row reverse), A185411.

Programs

  • Maple
    A156919 := proc(n,m) if n=m then 1; elif m=0 then 2^n ; elif m<0 or m>n then 0; else 2*(m+1)*procname(n-1,m)+(2*n-2*m+1)*procname(n-1,m-1) ; end if; end proc: seq(seq(A156919(n,m), m=0..n), n=0..7); # R. J. Mathar, Feb 03 2011
  • Mathematica
    g[0] = 1/Sqrt[1-x]; g[n_] := g[n] = 2x*D[g[n-1], x]; p[n_] := g[n] / g[0]^(2n+1) // Cancel; row[n_] := CoefficientList[p[n], x] // Rest; Table[row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Aug 09 2012, after Peter Bala *)
    Flatten[Table[Rest[CoefficientList[Nest[2 x D[#, x] &, (1 - x)^(-1/2), k] (1 - x)^(k + 1/2), x]], {k, 10}]] (* Jan Mangaldan, Mar 15 2013 *)

Formula

SF(z; n) = Sum_{m >= 1} m^(n-1)*4^(-m)*z^(m-1)*Gamma(2*m+1)/(Gamma(m)^2) = P(z;n) / (2^(n+1)*(1-z)^((2*n+3)/2)) for n >= 0. The polynomials P(z;n) = Sum_{k = 0..n} a(k)*z^k generate the a(n) sequence.
If we write the sequence as a triangle the following relation holds: T(n,m) = (2*m+2)*T(n-1,m) + (2*n-2*m+1)*T(n-1,m-1) with T(n,m=0) = 2^n and T(n,n) = 1, n >= 0 and 0 <= m <= n.
G.f.: 1/(1-xy-2x/(1-3xy/(1-4x/(1-5xy/(1-6x/(1-7xy/(1-8x/(1-... (continued fraction). - Paul Barry, Jan 26 2011
From Peter Bala, Apr 03 2011 (Start)
E.g.f.: exp(z*(x + 2)) * (1 - x)/(exp(2*x*z) - x*exp(2*z))^(3/2) = Sum_{n >= 0} P(x,n)*z^n/n! = 1 + (2 + x)*z + (4 + 10*x + x^2)*z^2/2! + (8 + 60*x + 36*x^2 + x^3)*z^3/3! + ... .
Explicit formula for the row polynomials:
P(x,n-1) = Sum_{k = 1..n} 2^(n-2*k)*binomial(2k,k)*k!*Stirling2(n,k)*x^(k-1)*(1 - x)^(n-k).
The polynomials x*(1 + x)^n * P(x/(x + 1),n) are the row polynomials of A187075.
The polynomials x^(n+1) * P((x + 1)/x,n) are the row polynomials of A186695.
Row sums are A001147(n+1). (End)
Sum_{k = 0..n} (-1)^k*T(n,k) = (-1)^binomial(n,2)*A012259(n+1). - Johannes W. Meijer, Sep 27 2011

Extensions

Minor edits from Johannes W. Meijer, Sep 27 2011

A147309 Riordan array [sec(x), log(sec(x) + tan(x))].

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 4, 0, 1, 5, 0, 10, 0, 1, 0, 40, 0, 20, 0, 1, 61, 0, 175, 0, 35, 0, 1, 0, 768, 0, 560, 0, 56, 0, 1, 1385, 0, 4996, 0, 1470, 0, 84, 0, 1, 0, 24320, 0, 22720, 0, 3360, 0, 120, 0, 1
Offset: 0

Views

Author

Paul Barry, Nov 05 2008

Keywords

Comments

Production array is [cosh(x),x] beheaded. Inverse is A147308. Row sums are A000111(n+1).
Unsigned version of A147308. - N. J. A. Sloane, Nov 07 2008
From Peter Bala, Jan 26 2011: (Start)
Define a polynomial sequence {Z(n,x)} n >= 0 by means of the recursion
(1)... Z(n+1,x) = 1/2*x*{Z(n,x-1)+Z(n,x+1)}
with starting condition Z(0,x) = 1. We call Z(n,x) the zigzag polynomial of degree n. This table lists the coefficients of these polynomials (for n >= 1) in ascending powers of x, row indices shifted by 1. The first few polynomials are
... Z(1,x) = x
... Z(2,x) = x^2
... Z(3,x) = x + x^3
... Z(4,x) = 4*x^2 + x^4
... Z(5,x) = 5*x + 10*x^3 + x^5.
The value Z(n,1) equals the zigzag number A000111(n). The polynomials Z(n,x) occur in formulas for the enumeration of permutations by alternating descents A145876 and in the enumeration of forests of non-plane unary binary labeled trees A147315.
{Z(n,x)}n>=0 is a polynomial sequence of binomial type and so is analogous to the sequence of monomials x^n. Denoting Z(n,x) by x^[n] to emphasize this analogy, we have, for example, the following analog of Bernoulli's formula for the sum of integer powers:
(2)... 1^[m]+...+(n-1)^[m] = (1/(m+1))*Sum_{k=0..m} (-1)^floor(k/2)*binomial(m+1,k)*B_k*n^[m+1-k],
where {B_k} k >= 0 = [1, -1/2, 1/6, 0, -1/30, ...] is the sequence of Bernoulli numbers.
For similarly defined polynomial sequences to Z(n,x) see A185415, A185417 and A185419. See also A185424.
(End)
[gd(x)^(-1)]^m = Sum_{n>=m} Tg(n,m)*(m!/n!)*x^n, where gd(x) is Gudermannian function, Tg(n+1,m+1)=T(n,m). - Vladimir Kruchinin, Dec 18 2011
The Bell transform of abs(E(n)), E(n) the Euler numbers. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016

Examples

			Triangle begins
   1;
   0,  1;
   1,  0,   1;
   0,  4,   0,  1;
   5,  0,  10,  0,  1;
   0, 40,   0, 20,  0, 1;
  61,  0, 175,  0, 35, 0, 1;
		

Crossrefs

Programs

  • Maple
    Z := proc(n, x) option remember;
    description 'zigzag polynomials Z(n, x)'
    if n = 0 return 1 else return 1/2*x*(Z(n-1, x-1)+Z(n-1, x+1)) end proc:
    with(PolynomialTools):
    for n from 1 to 10 CoefficientList(Z(n, x), x); end do; # Peter Bala, Jan 26 2011
  • Mathematica
    t[n_, k_] := SeriesCoefficient[ 2^k*ArcTan[(E^x - 1)/(E^x + 1)]^k*n!/k!, {x, 0, n}]; Table[t[n, k], {n, 1, 10}, {k, 1, n}] // Flatten // Abs (* Jean-François Alcover, Jan 23 2015 *)
  • PARI
    T(n, k)=local(X); if(k<1 || k>n, 0, X=x+x*O(x^n); n!*polcoeff(polcoeff((tan(X)+1/cos(X))^y, n), k)) \\ Paul D. Hanna, Feb 06 2011
    
  • Sage
    R = PolynomialRing(QQ, 'x')
    @CachedFunction
    def zzp(n, x) :
        return 1 if n == 0 else x*(zzp(n-1, x-1)+zzp(n-1, x+1))/2
    def A147309_row(n) :
        x = R.gen()
        L = list(R(zzp(n, x)))
        del L[0]
        return L
    for n in (1..10) : print(A147309_row(n)) # Peter Luschny, Jul 22 2012
    
  • Sage
    # uses[bell_matrix from A264428]
    # Alternative: Adds a column 1,0,0,0, ... at the left side of the triangle.
    bell_matrix(lambda n: abs(euler_number(n)), 10) # Peter Luschny, Jan 18 2016

Formula

From Peter Bala, Jan 26 2011: (Start)
GENERATING FUNCTION
The e.g.f., upon including a constant term of '1', is given by:
(1) F(x,t) = (tan(t) + sec(t))^x = Sum_{n>=0} Z(n,x)*t^n/n! = 1 + x*t + x^2*t^2/2! + (x+x^3)*t^3/3! + ....
Other forms include
(2) F(x,t) = exp(x*arcsinh(tan(t))) = exp(2*x*arctanh(tan(t/2))).
(3) F(x,t) = exp(x*(t + t^3/3! + 5*t^5/5! + 61*t^7/7! + ...)),
where the coefficients [1,1,5,61,...] are the secant or zig numbers A000364.
ROW GENERATING POLYNOMIALS
One easily checks from (1) that
d/dt(F(x,t)) = 1/2*x*(F(x-1,t) + F(x+1,t))
and so the row generating polynomials Z(n,x) satisfy the recurrence relation
(4) Z(n+1,x) = 1/2*x*{Z(n,x-1) + Z(n,x+1)}.
The e.g.f. for the odd-indexed row polynomials is
(5) sinh(x*arcsinh(tan(t))) = Sum_{n>=0} Z(2n+1,x)*t^(2n+1)/(2n+1)!.
The e.g.f. for the even-indexed row polynomials is
(6) cosh(x*arcsinh(tan(t))) = Sum_{n>=0} Z(2n,x)*t^(2n)/(2n)!.
From sinh(2*x) = 2*sinh(x)*cosh(x) we obtain the identity
(7) Z(2n+1,2*x) = 2*Sum_{k=0..n} binomial(2n+1,2k)*Z(2k,x)*Z(2n-2k+1,x).
The zeros of Z(n,x) lie on the imaginary axis (use (4) and adapt the proof given in A185417 for the zeros of the polynomial S(n,x)).
BINOMIAL EXPANSION
The form of the e.g.f. shows that {Z(n,x)} n >= 0 is a sequence of polynomials of binomial type. In particular, we have the expansion
(8) Z(n,x+y) = Sum_{k=0..n} binomial(n,k)*Z(k,x)*Z(n-k,y).
The delta operator D* associated with this binomial type sequence is
(9) D* = D - D^3/3! + 5*D^5/5! - 61*D^7/7! + 1385*D^9/9! - ..., and satisfies
the relation
(10) tan(D*)+sec(D*) = exp(D).
The delta operator D* acts as a lowering operator on the zigzag polynomials:
(11) (D*)Z(n,x) = n*Z(n-1,x).
ANALOG OF THE LITTLE FERMAT THEOREM
For integer x and odd prime p
(12) Z(p,x) = (-1)^((p-1)/2)*x (mod p).
More generally, for k = 1,2,3,...
(13) Z(p+k-1,x) = (-1)^((p-1)/2)*Z(k,x) (mod p).
RELATIONS WITH OTHER SEQUENCES
Row sums [1,1,2,5,16,61,...] are the zigzag numbers A000111(n) for n >= 1.
Column 1 (with 0's omitted) is the sequence of Euler numbers A000364.
A145876(n,k) = Sum_{j=0..k} (-1)^(k-j)*binomial(n+1,k-j)*Z(n,j).
A147315(n-1,k-1) = (1/k!)*Sum_{j=0..k} (-1)^(k-j)*binomial(k,j)*Z(n,j).
A185421(n,k) = Sum_{j=0..k} (-1)^(k-j)*binomial(k,j)*Z(n,j).
A012123(n) = (-i)^n*Z(n,i) where i = sqrt(-1). A012259(n) = 2^n*Z(n,1/2).
(End)
T(n,m) = Sum(i=0..n-m, s(i)/(n-i)!*Sum(k=m..n-i, A147315(n-i,k)*Stirling1(k,m))), m>0, T(n,0) = s(n), s(n)=[1,0,1,0,5,0,61,0,1385,0,50521,...] (see A000364). - Vladimir Kruchinin, Mar 10 2011

A202038 Hafnian of a +/-1 array.

Original entry on oeis.org

1, -1, -1, 5, 17, -121, -721, 6845, 58337, -698161, -7734241, 111973685, 1526099057, -25947503401, -419784870961, 8200346492525, 153563504618177, -3389281372287841, -72104198836466881, 1774459993676715365, 42270463533824671697, -1147649139272698443481
Offset: 0

Views

Author

David Callan, Dec 13 2011

Keywords

Comments

a(n) is the Hafnian of the triangular array (a(i,j)){1<=i<j<=2n} defined by a(i,j) = (-1)^i. The Hafnian is the same as the Pfaffian except without the alternating signs, that is, the Hafnian of the upper triangular array (a(i,j)){1<=i
a(n) is also the total weight of Dyck n-paths with the weight of a Dyck path defined as (-1)^(sum of the upstep heights) times the product of the upstep heights. For example, the Dyck 4-path P = UUDUUDDD has upsteps ending at heights 1,2,2,3 respectively and so weight(P) = (-1)^8 times (1*2*2*3) = +12.

Crossrefs

Absolute values give A012259. Alternating row sums of A185411.

Programs

  • Mathematica
    u[n_, 0] := If[n==0, 1, 0]; u[n_, m_] /; m==1 := 2^(n - 1); u[n_, m_] /; m==n>=1 := 1; u[n_, m_] /; 1Vaclav Kotesovec, Mar 09 2016, after Vladimir Kruchinin *)
  • Maxima
    a(n):=if n=0 then 1 else 4^(n-1)*sum(((-1)^(k+1)*(k+1)!*binomial(2*k+2,k+1)*stirling2(n,k+1))/2^(3*k+1),k,0,n-1); /* Vladimir Kruchinin, Mar 09 2016 */

Formula

E.g.f.: sqrt(2/(1 + exp(4*x))).
G.f.: 1/(1 + x/(1 - 2 x/(1 + 3 x /(1 - 4 x/(1 + 5 x /(1 - 6 x/ (1 + ...))))))) (continued fraction).
G.f.: 1/G(0) where G(k) = 1 + x*(2*k+1)/(1 - (2*k+2)*x/G(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Aug 11 2012
G.f.: 1/(U(0) + x) where U(k) = 1 + x*(2*k+1)*(2*k+2) - x*(2*k+1)*(2*k+2)/(1 + x/U(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Oct 13 2012
G.f.: 1/U(0) where U(k) = 1 + x + x^2*(2*k+1)*(2*k+2)/U(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 13 2012
a(n) ~ (cos(n*Pi/2)-sin(n*Pi/2)) * 2^(2*n+3/2) *n^n / (Pi^(n+1/2) * exp(n)). - Vaclav Kotesovec, Oct 08 2013
G.f.: T(0)/(1+x), where T(k) = 1 - x^2*(2*k+1)*(2*k+2)/( x^2*(2*k+1)*(2*k+2) + (1+x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 22 2013
a(n) = 4^(n-1)*Sum_{k=0..n-1} (((-1)^(k+1) * (k+1)! * binomial(2*k+2, k+1) * stirling2(n, k+1)) / 2^(3*k+1)), n>0, a(0)=1. - Vladimir Kruchinin, Mar 09 2016

A166317 Exponential Riordan array [sec(2x), arctanh(tan(x))].

Original entry on oeis.org

1, 0, 1, 4, 0, 1, 0, 16, 0, 1, 80, 0, 40, 0, 1, 0, 640, 0, 80, 0, 1, 3904, 0, 2800, 0, 140, 0, 1, 0, 49152, 0, 8960, 0, 224, 0, 1, 354560, 0, 319744, 0, 23520, 0, 336, 0, 1, 0, 6225920, 0, 1454080, 0, 53760, 0, 480, 0, 1, 51733504, 0, 54897920, 0, 5230720, 0, 110880, 0, 660, 0, 1
Offset: 0

Author

Paul Barry, Oct 11 2009

Keywords

Comments

The Bell transform of abs(2^n*euler_number(n)). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016

Examples

			Triangle begins
  1;
  0, 1;
  4, 0, 1;
  0, 16, 0, 1;
  80, 0, 40, 0, 1;
  0, 640, 0, 80, 0, 1;
  3904, 0, 2800, 0, 140, 0, 1;
  0, 49152, 0, 8960, 0, 224, 0, 1;
  354560, 0, 319744, 0, 23520, 0, 336, 0, 1;
  0, 6225920, 0, 1454080, 0, 53760, 0, 480, 0, 1;
  51733504, 0, 54897920, 0, 5230720, 0, 110880, 0, 660, 0, 1;
Production matrix is
    0,    1;
    4,    0,    1;
    0,   12,    0,    1;
   16,    0,   24,    0,    1;
    0,   80,    0,   40,    0,    1;
   64,    0,  240,    0,   60,    0,   1;
    0,  448,    0,  560,    0,   84,   0,   1;
  256,    0, 1792,    0, 1120,    0, 112,   0, 1;
    0, 2304,    0, 5376,    0, 2016,   0, 144, 0, 1;
which is the exponential Riordan array [cosh(2x),x] minus its top row. (Cf. also A117435.)
		

Crossrefs

Row sums are A012259(n+1).
Inverse is A166318 which is a signed version of this sequence.

Programs

  • Mathematica
    (* The function BellMatrix is defined in A264428. *)
    rows = 12;
    M = BellMatrix[Abs[2^#*EulerE[#]]&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jul 11 2019 *)
  • Sage
    # uses[bell_matrix from A264428]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    bell_matrix(lambda n: abs(2^n*euler_number(n)), 10) # Peter Luschny, Jan 18 2016
Showing 1-4 of 4 results.