cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A156925 FP2 polynomials related to the generating functions of the left hand columns of the A156920 triangle.

Original entry on oeis.org

1, 1, 1, 1, 8, -11, -6, 1, 38, -108, -242, 839, -444, -180, 1, 144, -425, -7382, 48451, -96764, -2559, 257002, -312444, 88344, 30240, 1, 487, 720, -130472, 1277794, -4193514, -6504496
Offset: 0

Views

Author

Johannes W. Meijer, Feb 20 2009

Keywords

Comments

The FP2 polynomials appear in the numerators of the GF2 o.g.f.s. of the left hand columns of A156920. The FP2 can be calculated with the formula of the LHC sequence, see A156920, and the formula for the general structure of the generating function GF2, see below.
An appropriate name for the FP2 polynomials seems to be the flower polynomials of the second kind because the zero patterns of these polynomials look like flowers. The zero patterns of the FP2 and the FP1, see A156921, resemble each other closely.
A Maple program that generates for a left hand column with a certain LHCnr its GF2 and FP2 can be found below. LHCnr stands for left hand column number and starts from 1.

Examples

			The first few rows of the "triangle" of the coefficients of the FP2 polynomials.
In the columns the coefficients of the powers of z^m, m=0,1,2,..., appear.
  [1]
  [1, 1]
  [1, 8, -11, -6]
  [1, 38, -108, -242, 839, -444, -180]
  [1, 144, -425, -7382, 48451, -96764, -2559, 257002, -312444, 88344, 30240]
Matrix of the coefficients of the FP2 polynomials. The coefficients in the columns of this matrix are the powers of z^m, m=0,1,2,...
  [1, 0, 0, 0, 0, 0, 0]
  [1, 1, 0, 0, 0, 0, 0]
  [1, 8 , -11, -6, 0, 0, 0]
  [1, 38, -108, -242, 839, -444, -180]
The first few FP2 polynomials are:
  FP2(z; LHCnr = 1) = 1
  FP2(z; LHCnr = 2) = (1+z)
  FP2(z; LHCnr = 3) = 1+8*z-11*z^2-6*z^3
Some GF2(z;LHCnr) are:
  GF2(z; LHCnr = 3) = (1+8*z-11*z^2-6*z^3)/((1-z)^3*(1-2*z)^2*(1-3*z))
  GF2(z; LHCnr = 4) = (1+38*z-108*z^2-242*z^3+839*z^4-444*z^5-180*z^6)/((1-z)^4*(1-2*z)^3*(1-3*z)^2*(1-4*z))
		

Crossrefs

For the first few GF2's see A050488, A142965, A142966 and A142968.
Row sums(n) = A156926(n).
The number of FP2 terms follow the 'Lazy Caterer's sequence' A000124.
For the polynomials in the denominators of the GF2(z;LHCnr) see A157703.

Programs

  • Maple
    LHCnr:=5; LHCmax:=(LHCnr)*(LHCnr-1)/2: RHCend:=LHCnr+LHCmax: for k from LHCnr to RHCend do for n from 0 to k do S2[k,n]:=sum((-1)^(n+i)*binomial(n,i)*i^k/n!,i=0..n) end do: G(k,x):= sum(S2[k,p]*((2*p)!/p!)*x^p/(1-4*x)^(p+1),p=0..k)/ (((-1)^(k+1)*2*x)/(-1+4*x)^(k+1)): fx:=simplify(G(k,x)): nmax:=degree(fx); for n from 0 to nmax do d[n]:= coeff(fx,x,n)/2^n end do: LHC[n]:=d[LHCnr-1] end do: a:=n-> LHC[n]: seq(a(n), n=LHCnr..RHCend); for nx from 0 to LHCmax do num:=sort(sum(A[t]*z^t,t=0..LHCmax)): nom:=product((1-u*z)^(LHCnr-u+1),u=1..LHCnr); LHCb:=series(num/nom,z,nx+1); y:=coeff(LHCb,z,nx)-A[nx]; x:=LHC[LHCnr+nx]; A[nx]:=x-y; end do: FP2[LHCnr]:=sort(num,z, ascending); GenFun[LHCnr]:= FP2[LHCnr]/ product((1-m*z)^(LHCnr-m+1), m=1..LHCnr);

Formula

G.f.: GF2(z; LHCnr) = FP2(z; LHCnr)/Product_{m=1..LHCnr} (1-m*z)^(LHCnr-m+1).
Row sum(n+1) = (-1)^(n)*2*(n+1)!*Row sum(n); Row sum(n=0) = 1.

A156921 FP1 polynomials related to the generating functions of the right hand columns of the A156920 triangle.

Original entry on oeis.org

1, 1, 1, 1, -6, 1, 7, -79, 119, 126, -270, 1, 28, -515, 1654, 8689, -65864, 142371, -82242, -99090, 113400, 1, 86, -2255, 5784, 300930, -3904584, 20663714, -41517272, -80232259, 657717054
Offset: 0

Views

Author

Johannes W. Meijer, Feb 20 2009

Keywords

Comments

The FP1 polynomials appear in the numerators of the GF1 o.g.f.s. of the right hand columns of A156920. The FP1 can be calculated with the formula for the RHC sequence, see A156920, and the formula for the general structure of the generating function GF1, see below.
An appropriate name for the FP1 polynomials seems to be the flower polynomials of the first kind because the zero patterns of these polynomials look like flowers. The zero patterns of the FP2, see A156925, and the FP1 resemble each other closely.
A Maple program that generates for a right hand column with a certain RHCnr its GF1 and FP1 can be found below. RHCnr stands for right hand column number and starts from 1.

Examples

			The first few rows of the "triangle" of the coefficients of the FP1 polynomials.
In the columns the coefficients of the powers of z^m, m=0,1,2,... , appear.
  [1]
  [1]
  [1, 1, -6]
  [1, 7, -79, 119, 126, -270]
  [1, 28, -515, 1654, 8689, -65864, 142371, -82242, -99090, 113400]
Matrix of the coefficients of the FP1 polynomials. The coefficients in the columns of this matrix are the powers of z^m, m=0,1,2,.. .
  [1, 0 ,0, 0, 0, 0, 0, 0, 0, 0]
  [1, 0 ,0, 0, 0, 0, 0, 0, 0, 0]
  [1, 1, -6, 0 ,0, 0, 0, 0, 0, 0]
  [1, 7, -79, 119, 126, -270, 0, 0, 0, 0]
  [1, 28, -515, 1654, 8689, -65864, 142371, -82242, -99090, 113400]
The first few FP1 polynomials are:
  FP1(z; RHCnr=1) = 1
  FP1(z; RHCnr=2) = 1
  FP1(z; RHCnr =3) = 1+z-6*z^2
Some GF1(z;RHCnr) are:
  GF1(z;RHCnr= 3) = (1+z-6*z^2)/((1-5*z)*(1-3*z)^2*(1-z)^3)
  GF1(z;RHCnr= 4) = (1+7*z-79*z^2+119*z^3+126*z^4-270*z^5)/((1-7*z)*(1-5*z)^2*(1-3*z)^3*(1-z)^4)
		

Crossrefs

For the first few GF1's see A000340, A156922, A156923, A156924.
The number of FP1 terms follow the triangular numbers A000217, with quite surprisingly one exception here a(0)=1.
Abs(Row sums (n)) = A098695(n).
For the polynomials in the denominators of the GF1(z;RHCnr) see A157702.

Programs

  • Maple
    RHCnr:=4: if RHCnr=1 then RHCmax :=1; else RHCmax:=(RHCnr-1)*(RHCnr)/2 end if: RHCend:=RHCnr+RHCmax: for k from RHCnr to RHCend do for n from 0 to k do S2[k,n]:=sum((-1)^(n+i)*binomial(n,i)*i^k/n!,i=0..n) end do: G(k,x):= sum(S2[k,p]*((2*p)!/p!) *x^p/(1-4*x)^(p+1),p=0..k)/(((-1)^(k+1)*2*x)/(-1+4*x)^(k+1)): fx:=simplify(G(k,x)): nmax:=degree(fx); RHC[k-RHCnr+1]:= coeff(fx,x,k-RHCnr)/2^(k-RHCnr) end do: a:=n-> RHC[n]: seq(a(n), n=1..RHCend-RHCnr+1); for nx from 0 to RHCmax do num:=sort(sum(A[t]*z^t, t=0..RHCmax)); nom:=Product((1-(2*u-1)*z)^(RHCnr-u+1),u=1..RHCnr): RHCa:= series(num/nom,z,nx+1); y:=coeff(RHCa,z,nx)-A[nx]; x:=RHC[nx+1]; A[nx]:=x-y; end do: FP1[RHCnr]:=sort(num,z, ascending); GenFun[RHCnr] :=FP1[RHCnr]/product((1-(2*m-1)*z)^(RHCnr-m+1),m=1..RHCnr);

Formula

G.f.: GF1(z;RHCnr) := FP1(z;RHCnr)/product((1-(2*m-1)*z)^(RHCnr+1-m),m=1..RHCnr)
Row sums (n) = (-1)^(1+(n+1)*(n+2)/2)*A098695(n).

A156922 Third right hand column (n-m=2) of the A156920 triangle.

Original entry on oeis.org

1, 15, 129, 877, 5280, 29658, 159742, 838038, 4323003, 22057825, 111750519, 563535483, 2833221970, 14216330916, 71243079660, 356731958812, 1785306330981, 8931761831331, 44675371382365
Offset: 0

Views

Author

Johannes W. Meijer, Feb 20 2009

Keywords

Crossrefs

Other columns A000340, A156923, A156924.
Equals A156920 third right hand column.
Equals A156919 third right hand column divided by 4.
Equals A142963 third right hand column divided by 2^n.

Formula

a(n) = 14*a(n-1)-75*a(n-2)+196*a(n-3)-263*a(n-4)+174*a(n-5)-45*a(n-6)
a(n) = (4*n^2-108*n*3^n+24*n-378*3^n+375*5^n+35)/32
G.f.: GF1(z;RHCnr=3) = (1+z-6*z^2)/((1-5*z)*(1-3*z)^2*(1-z)^3)

A156923 Fourth right hand column (n-m=3) of the A156920 triangle.

Original entry on oeis.org

1, 37, 646, 8030, 82610, 756218, 6411720, 51586344, 400011435, 3020658295, 22373863774, 163379472214, 1180488191108, 8462445970580, 60305767988960, 427848087263712, 3025286818472661
Offset: 0

Views

Author

Johannes W. Meijer, Feb 20 2009

Keywords

Crossrefs

Other columns A000340, A156922, A156924.
Equals A156920 fourth right hand column.
Equals A156919 fourth right hand column divided by 8.
Equals A142963 fourth right hand column divided by 2^n

Formula

a(n) = 30*a(n-1)-385*a(n-2)+2776*a(n-3)-12418*a(n-4)+35908*a(n-5)-67818*a(n-6)+82552*a(n-7)-62109*a(n-8)+26190*a(n-9)-4725*a(n-10)
a(n) = (-8*n^3+972*n^2*3^n-84*n^2+7776*n*3^n-11250*n*5^n-286*n+15309*3^n-50625*5^n+36015*7^n-315)/384
G.f.: GF1(z;RHCnr=4) = (1+7*z-79*z^2+119*z^3+126*z^4-270*z^5)/((1-7*z)*(1-5*z)^2*(1-3*z)^3*(1-z)^4)

A156924 Fifth right hand column (n-m=4) of the A156920 triangle.

Original entry on oeis.org

1, 83, 2685, 56285, 919615, 12813843, 160206627, 1854550395, 20291056470, 212826091180, 2161547322134, 21414479565774, 208076662576370, 1991164206775450, 18825064380813450
Offset: 0

Views

Author

Johannes W. Meijer, Feb 20 2009

Keywords

Crossrefs

Other columns A000340, A156922, A156923.
Equals A156920 fifth right hand column.
Equals A156919 fifth right hand column divided by 16.
Equals A142963 fifth right hand column divided by 2^n

Formula

a(n)=55*a(n-1)-1365*a(n-2)+20251*a(n-3)-200557*a(n-4)+1402203*a(n-5)-7137473*a(n-6)+26886431*a(n-7)-75433971*a(n-8)+157376597*a(n-9)-241846607*a(n-10)+268663713*a(n-11)-208880991*a(n-12)+107416665*a(n-13)-32730075*a(n-14)+4465125*a(n-15)
a(n)= (16*n^4-7776*n^3*3^n+256*n^3-104976*n^2*3^n+225000*n^2*5^n+ 1496*n^2- 464616*n*3^n+ 2250000*n*5^n-2016840*n*7^n+3776*n-673596*3^n+5568750*5^n-11092620*7^n+6200145*9^n+3465)/6144
G.f.: GF1(z;RHCnr=5) = (1+28*z-515*z^2+1654*z^3+8689*z^4-65864*z^5+142371*z^6-82242*z^7-99090*z^8+113400*z^9)/((1-9*z)*(1-7*z)^2*(1-5*z)^3*(1-3*z)^4*(1-z)^5)

A000340 a(0)=1, a(n) = 3*a(n-1) + n + 1.

Original entry on oeis.org

1, 5, 18, 58, 179, 543, 1636, 4916, 14757, 44281, 132854, 398574, 1195735, 3587219, 10761672, 32285032, 96855113, 290565357, 871696090, 2615088290, 7845264891, 23535794695, 70607384108, 211822152348, 635466457069
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Feb 20 2009: (Start)
Second right hand column (n-m=1) of the A156920 triangle.
The generating function of this sequence enabled the analysis of the polynomials A156921 and A156925.
(End)
Partial sums of A003462, and thus the second partial sums of A000244 (3^n). Also column k=2 of A106516. - John Keith, Jan 04 2022

Examples

			G.f. = 1 + 5*x + 18*x^2 + 58*x^3 + 179*x^4 + 543*x^5 + 1636*x^6 + ...
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

From Johannes W. Meijer, Feb 20 2009: (Start)
Equals A156920 second right hand column.
Equals A142963 second right hand column divided by 2^n.
Equals A156919 second right hand column divided by 2.
(End)
Cf. A014915.
Equals column k=1 of A008971 (shifted). - Jeremy Dover, Jul 11 2021
Cf. A000340, A003462 (first differences), A106516.

Programs

  • Magma
    [(3^(n+2)-2*n-5)/4: n in [0..30]]; // Vincenzo Librandi, Aug 15 2011
  • Maple
    a[ -1]:=0:a[0]:=1:for n from 1 to 50 do a[n]:=4*a[n-1]-3*a[n-2]+1 od: seq(a[n],n=0..50); # Miklos Kristof, Mar 09 2005
    A000340:=-1/(3*z-1)/(z-1)**2; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    a[ n_] := MatrixPower[ {{1, 0, 0}, {1, 1, 0}, {1, 1, 3}}, n + 1][[3, 1]]; (* Michael Somos, May 28 2014 *)
    RecurrenceTable[{a[0]==1,a[n]==3a[n-1]+n+1},a,{n,30}] (* or *) LinearRecurrence[{5,-7,3},{1,5,18},30] (* Harvey P. Dale, Jan 31 2017 *)

Formula

G.f.: 1/((1-3*x)*(1-x)^2).
a(n) = (3^(n+2) - 2*n - 5)/4.
a(n) = Sum_{k=0..n+1} (n-k+1)*3^k = Sum_{k=0..n+1} k*3^(n-k+1). - Paul Barry, Jul 30 2004
a(n) = Sum_{k=0..n} binomial(n+2, k+2)*2^k. - Paul Barry, Jul 30 2004
a(-1)=0, a(0)=1, a(n) = 4*a(n-1) - 3*a(n-2) + 1. - Miklos Kristof, Mar 09 2005
a(n) = 5*a(n-1) - 7*a(n-2) + 3*a(n-3). - Johannes W. Meijer, Feb 20 2009
a(-2 - n) = 3^-n * A014915(n). - Michael Somos, May 28 2014
E.g.f.: exp(x)*(9*exp(2*x) - 2*x - 5)/4. - Stefano Spezia, Nov 09 2024

A014307 Expansion of the e.g.f. sqrt(exp(x) / (2 - exp(x))).

Original entry on oeis.org

1, 1, 2, 7, 35, 226, 1787, 16717, 180560, 2211181, 30273047, 458186752, 7596317885, 136907048461, 2665084902482, 55726440112987, 1245661569161135, 29642264728189066, 748158516941653967, 19962900431638852297, 561472467839585937560, 16602088291822017588121
Offset: 0

Views

Author

Keywords

Comments

The Hankel transform of this sequence is A121835. - Philippe Deléham, Aug 31 2006
a(n) is the moment of order (n-1) for the discrete measure associated to the weight rho(j + 1/2) = 2^(j + 1/2)/(Pi*binomial(2*j + 1, j + 1/2)), with j integral. So we have a(n) = Sum_{j >= 0} (j + 1/2)^(n-1)*rho(j + 1/2). - Groux Roland, Jan 05 2009
Let f(n) = Sum_{j >= 1} j^n*2^j/binomial(2*j, j) = r_n*Pi/2 + s_n; sequence gives r_{n-1}. For example, f(0) through f(5) are [1 + (1/2)*Pi, 3 + Pi, 11 + (7/2)*Pi, 55 + (35/2)*Pi, 355 + 113*Pi, 2807 + (1787/2)*Pi]. For s_n, see A180875. - N. J. A. Sloane, following a suggestion from Herb Conn, Feb 08 2011
Ren gives seven combinatorial interpretations for this sequence. - Peter Bala, Feb 01 2013
Number of left-right arrangements of [n] [Crane, 2015]. - N. J. A. Sloane, Nov 21 2014
In Dyson et al. (2010-2011, 2013), we have S_n(2) = Sum_{j>=1} j^n*2^j/binomial(2*j, j) = A014307(n+1)*Pi/2 + A180875(n) for n >= 1 (and S_0(2) is not defined). This series was originally defined by Lehmer (1985). - Petros Hadjicostas, May 14 2020

Crossrefs

Row sums of triangle A156920 (row sums (n) = a(n+1)). - Johannes W. Meijer, Feb 20 2009

Programs

  • GAP
    Concatenation([1], List([1..20], n-> Sum([1..n], k-> Sum([k..n], m-> Stirling2(n,m)*Factorial(m)*Binomial(m-1,k-1)*Binomial(2*k-2,k-1)*(-2)^(1-k)/k )))); # G. C. Greubel, Oct 20 2019
  • Magma
    m:=20; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( 1/Sqrt(2*Exp(-x)-1) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 30 2019
    
  • Maple
    seq(coeff(series(1/sqrt(2*exp(-x)-1), x, n+1)*n!, x, n), n = 0..20); # G. C. Greubel, Oct 20 2019
    a := n -> add((-1)^(n-k)*Stirling2(n,k)*doublefactorial(2*k-1), k=0..n):
    seq(a(n), n = 0..21); # Peter Luschny, Oct 19 2021
  • Mathematica
    a[n_] := Sum[ Sum[ StirlingS2[n, k]*k!*Binomial[k-1, m-1], {k, m, n}]/m*Binomial[2*m-2, m-1]*(-1)^(m-1)/2^(m-1), {m, 1, n}]; a[0]=1; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Sep 10 2012, after Vladimir Kruchinin *)
    CoefficientList[Series[Sqrt[E^x/(2-E^x)], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 07 2014 *)
    A014307 = ConstantArray[0,20]; A014307[[1]]=1; Do[A014307[[n+1]] = 1 + Sum[(-1+Binomial[n+1,j])*A014307[[j]],{j,1,n}],{n,1,19}]; Flatten[{1,A014307}] (* Vaclav Kotesovec after Jon Perry, Jan 07 2014 *)
  • Maxima
    a(n):=sum(sum(stirling2(n,k)*k!*binomial(k-1,m-1),k,m,n)/(m)* binomial(2*m-2,m-1)*(-1)^(m-1)/2^(m-1),m,1,n); /* Vladimir Kruchinin, May 10 2011 */
    
  • PARI
    {a(n)=n!*polcoeff((exp(x +x*O(x^n))/(2-exp(x +x*O(x^n))))^(1/2),n)} \\ Paul D. Hanna, Jan 24 2008
    
  • PARI
    /* As solution to integral equation: */ {a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=1+intformal(A^3*exp(-x+x*O(x^n))));n!*polcoeff(A,n)} \\ Paul D. Hanna, Jan 24 2008
    
  • Sage
    m = 20; T = taylor(1/sqrt(2*exp(-x)-1), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Jun 30 2019
    

Formula

a(n+1) = 1 + Sum_{j=1..n} (-1 + binomial(n+1,j))*a(j). - Jon Perry, Apr 25 2005, corrected by Vaclav Kotesovec, Jan 07 2014
The Hankel transform of this sequence is A121835. - Philippe Deléham, Aug 31 2006
E.g.f. A(x) satisfies A(x) = 1 + Integral_{t=0..x} (A(t)^3 * exp(-t)) dt. - Paul D. Hanna, Jan 24 2008 [Edited by Petros Hadjicostas, May 14 2020]
From Vladimir Kruchinin, May 10 2011: (Start)
a(n) = Sum_{m=1..n} (Sum_{k=m..n} Stirling2(n,k)*k!*binomial(k-1,m-1))*(1/m)*binomial(2*m-2,m-1)*(-1)^(m-1)/2^(m-1), n > 0.
E.g.f. B(x) = Integral_{t = 0..x} A(t) dt satisfies B'(x) = tan(B(x)) + sec(B(x)). (End)
From Peter Bala, Aug 25 2011: (Start)
It follows from Vladimir Kruchinin's formula above that
Sum_{n>=1} a(n-1)*x^n/n! = series reversion (Integral_{t = 0..x} 1/(sec(t)+tan(t)) dt) = series reversion (Integral_{t = 0..x} (sec(t)-tan(t)) dt) = series reversion (x - x^2/2! + x^3/3! - 2*x^4/4! + 5*x^5/5! - 16*x^6/6! + ...) = x + x^2/2! + 2*x^3/3! + 7*x^4/4! + 35*x^5/5! + 226*x^6/6! + ....
Let f(x) = sec(x) + tan(x). Define the nested derivative D^n[f](x) by means of the recursion D^0[f](x) = 1 and D^(n+1)[f](x) = (d/dx)(f(x)*D^n[f](x)) for n >= 0 (see A145271 for the coefficients in the expansion of D^n[f](x) in powers of f(x)). Then by [Dominici, Theorem 4.1] we have a(n) = D^n[f](0). Compare with A190392.
(End)
G.f.: 1/G(0) where G(k) = 1 - x*(2*k+1)/( 1 - x*(k+1)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 23 2013
a(n) ~ sqrt(2) * n^n / (exp(n) * (log(2))^(n+1/2)). - Vaclav Kotesovec, Jan 07 2014
G.f.: R(0)/(1-x), where R(k) = 1 - x^2*(k+1)*(2*k+1)/(x^2*(k+1)*(2*k+1) - (3*x*k+x-1)*(3*x*k+4*x-1)/R(k+1)); (continued fraction). - Sergei N. Gladkovskii, Jan 30 2014
a(0) = 1 and a(n) = a(n-1) + Sum_{k=1..n-1} binomial(n-1, k-1)*a(k) for n > 0. - Seiichi Manyama, Oct 20 2019
a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling2(n, k)*(2*k-1)!! (see Qi/Ward). - Peter Luschny, Oct 19 2021
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^k * (k/n - 2) * binomial(n,k) * a(n-k). - Seiichi Manyama, Nov 15 2023
Conjecture from Mikhail Kurkov, Jun 24 2025: (Start)
a(n) = R(n,0,2) where
R(0,0,m) = 1,
R(n,0,m) = Sum_{j=0..n-1} R(n-1,j,m),
R(n,k,m) = m*R(n,0,m) - Sum_{j=0..k-1} R(n-1,j,m) for 0 < k <= n.
More generally, R(n,0,m) gives expansion of the e.g.f. (exp(x) / (m - (m-1)*exp(x)))^(1/m) for any m>0. (End)

Extensions

Name edited by Petros Hadjicostas, May 14 2020

A050488 a(n) = 3*(2^n-1) - 2*n.

Original entry on oeis.org

0, 1, 5, 15, 37, 83, 177, 367, 749, 1515, 3049, 6119, 12261, 24547, 49121, 98271, 196573, 393179, 786393, 1572823, 3145685, 6291411, 12582865, 25165775, 50331597, 100663243, 201326537, 402653127, 805306309, 1610612675, 3221225409, 6442450879, 12884901821, 25769803707
Offset: 0

Views

Author

James Sellers, Dec 26 1999

Keywords

Comments

Number of words of length n+1 where first element is from {0,1,2}, other elements are from {0,1} and sequence does not decrease (for n=2 there are 3*2^2 sequences, but 000, 100, 110, 111, 200, 210, 211 decrease, so a(2) = 12-7 = 5).
Number of subgroups of C_(2^n) X C_(2^n) (see A060724).
Starting with 1 = row sums of triangle A054582. - Gary W. Adamson, Jun 23 2008
Starting with "1" equals the eigensequence of a triangle with integer squares (1, 4, 9, 16, ...) as the left border and the rest 1's. - Gary W. Adamson, Jul 24 2010
(1 + 2x + 2x^2 + 2x^3 + ...)*(1 + 3x + 7x^2 + 15x^3 + ...) = (1 + 5x + 15x^2 + 37x^3 + ...). - Gary W. Adamson, Mar 14 2012
The partial sums of A033484. - J. M. Bergot, Oct 03 2012
Binomial transform is 0, 1, 7, 33, ... (shifted A066810); inverse binomial transform is 0, 1, 3, 3, ... (3 repeated). - R. J. Mathar, Oct 05 2012
Define a triangle by T(n,0) = n*(n+1) + 1, T(n,n) = n + 1, and T(r,c) = T(r-1,c-1) + T(r-1,c) otherwise; then a(n+1) is the sum of the terms of row n. - J. M. Bergot, Mar 30 2013
Starting with "1" are also the antidiagonal sums of the array formed by partial sums of integer squares (1, 4, 9, 16, ...). - Luciano Ancora, Apr 24 2015
Sums of 2 adjacent terms in diagonal k=2 of Eulerian triangle A008292. I.e., T(n,2)+T(n-1,2) for n > 0. Also, 4th NW-SE diagonal of A126277. In other words, a(n) = A000295(n) + A000295(n+1). - Gregory Gerard Wojnar, Sep 30 2018

Crossrefs

Programs

  • GAP
    List([0..30],n->3*(2^n-1)-2*n); # Muniru A Asiru, Oct 26 2018
    
  • Haskell
    a050488 n = sum $ zipWith (*) a000079_list (reverse $ take n a005408_list)
    -- Reinhard Zumkeller, Jul 24 2015
    
  • Magma
    [3*(2^n-1) - 2*n: n in [0..30]]; // G. C. Greubel, Oct 23 2018
    
  • Maple
    seq(coeff(series(x*(x+1)/((1-x)^2*(1-2*x)),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 26 2018
  • Mathematica
    Table[3(2^n-1)-2n,{n,0,30}] (* or *) LinearRecurrence[{4,-5,2}, {0,1,5}, 40] (* Harvey P. Dale, Apr 09 2018 *)
  • PARI
    a(n)=3*(2^n-1)-2*n \\ Charles R Greathouse IV, Sep 24 2015
    
  • Python
    for n in range(0, 30): print(3*(2**n-1) - 2*n, end=', ') # Stefano Spezia, Oct 27 2018

Formula

Row sums of A125165: (1, 5, 15, 37, ...). Binomial transform of [1, 4, 6, 6, 6, ...] = [1, 5, 15, 37, ...]. 4th diagonal from the right of A126777 = (1, 5, 15, ...). - Gary W. Adamson, Dec 23 2006
a(n) = 2*a(n-1) + (2n-1). - Gary W. Adamson, Sep 30 2007
From Johannes W. Meijer, Feb 20 2009: (Start)
a(n+1) = A156920(n+1,1).
a(n+1) = A156919(n+1,1)/2^n.
a(n+1) = A142963(n+2,1)/2.
a(n) = 4a(n-1) - 5a(n-2) + 2a(n-3) for n>2 with a(0) = 0, a(1) = 1, a(2) = 5.
G.f.: z*(1+z)/((1-z)^2*(1-2*z)).
(End)
a(n) = 2*n + 2*a(n-1) - 1 (with a(0)=0). - Vincenzo Librandi, Aug 06 2010
a(n+1) = Sum_{k=0..n} A000079(k) * A005408(n-k), convolution of the powers of 2 with the odd numbers. - Reinhard Zumkeller, Mar 08 2012
E.g.f.: exp(x)*(3*exp(x) - 2*x - 3). - Stefano Spezia, May 15 2023

A156919 Table of coefficients of polynomials related to the Dirichlet eta function.

Original entry on oeis.org

1, 2, 1, 4, 10, 1, 8, 60, 36, 1, 16, 296, 516, 116, 1, 32, 1328, 5168, 3508, 358, 1, 64, 5664, 42960, 64240, 21120, 1086, 1, 128, 23488, 320064, 900560, 660880, 118632, 3272, 1, 256, 95872, 2225728
Offset: 0

Views

Author

Johannes W. Meijer, Feb 20 2009, Jun 24 2009

Keywords

Comments

Essentially the same as A185411. Row reverse of A185410. - Peter Bala, Jul 24 2012
The SF(z; n) formulas, see below, were discovered while studying certain properties of the Dirichlet eta function.
From Peter Bala, Apr 03 2011: (Start)
Let D be the differential operator 2*x*d/dx. The row polynomials of this table come from repeated application of the operator D to the function g(x) = 1/sqrt(1 - x). For example,
D(g) = x*g^3
D^2(g) = x*(2 + x)*g^5
D^3(g) = x*(4 + 10*x + x^2)*g^7
D^4(g) = x*(8 + 60*x + 36*x^2 + x^3)*g^9.
Thus this triangle is analogous to the triangle of Eulerian numbers A008292, whose row polynomials come from the repeated application of the operator x*d/dx to the function 1/(1 - x). (End)

Examples

			The first few rows of the triangle are:
  [1]
  [2, 1]
  [4, 10, 1]
  [8, 60, 36, 1]
  [16, 296, 516, 116, 1]
The first few P(z;n) are:
  P(z; n=0) = 1
  P(z; n=1) = 2 + z
  P(z; n=2) = 4 + 10*z + z^2
  P(z; n=3) = 8 + 60*z + 36*z^2 + z^3
The first few SF(z;n) are:
  SF(z; n=0) = (1/2)*(1)/(1-z)^(3/2);
  SF(z; n=1) = (1/4)*(2+z)/(1-z)^(5/2);
  SF(z; n=2) = (1/8)*(4+10*z+z^2)/(1-z)^(7/2);
  SF(z; n=3) = (1/16)*(8+60*z+36*z^2+z^3)/(1-z)^(9/2);
In the Savage-Viswanathan paper, the coefficients appear as
  1;
  1,    2;
  1,   10,     4;
  1,   36,    60,     8;
  1,  116,   516,   296,    16;
  1,  358,  3508,  5168,  1328,   32;
  1, 1086, 21120, 64240, 42960, 5664, 64;
  ...
		

Crossrefs

A142963 and this sequence can be mapped onto the A156920 triangle.
FP1 sequences A000340, A156922, A156923, A156924.
FP2 sequences A050488, A142965, A142966, A142968.
Appears in A162005, A000182, A162006 and A162007.
Cf. A185410 (row reverse), A185411.

Programs

  • Maple
    A156919 := proc(n,m) if n=m then 1; elif m=0 then 2^n ; elif m<0 or m>n then 0; else 2*(m+1)*procname(n-1,m)+(2*n-2*m+1)*procname(n-1,m-1) ; end if; end proc: seq(seq(A156919(n,m), m=0..n), n=0..7); # R. J. Mathar, Feb 03 2011
  • Mathematica
    g[0] = 1/Sqrt[1-x]; g[n_] := g[n] = 2x*D[g[n-1], x]; p[n_] := g[n] / g[0]^(2n+1) // Cancel; row[n_] := CoefficientList[p[n], x] // Rest; Table[row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Aug 09 2012, after Peter Bala *)
    Flatten[Table[Rest[CoefficientList[Nest[2 x D[#, x] &, (1 - x)^(-1/2), k] (1 - x)^(k + 1/2), x]], {k, 10}]] (* Jan Mangaldan, Mar 15 2013 *)

Formula

SF(z; n) = Sum_{m >= 1} m^(n-1)*4^(-m)*z^(m-1)*Gamma(2*m+1)/(Gamma(m)^2) = P(z;n) / (2^(n+1)*(1-z)^((2*n+3)/2)) for n >= 0. The polynomials P(z;n) = Sum_{k = 0..n} a(k)*z^k generate the a(n) sequence.
If we write the sequence as a triangle the following relation holds: T(n,m) = (2*m+2)*T(n-1,m) + (2*n-2*m+1)*T(n-1,m-1) with T(n,m=0) = 2^n and T(n,n) = 1, n >= 0 and 0 <= m <= n.
G.f.: 1/(1-xy-2x/(1-3xy/(1-4x/(1-5xy/(1-6x/(1-7xy/(1-8x/(1-... (continued fraction). - Paul Barry, Jan 26 2011
From Peter Bala, Apr 03 2011 (Start)
E.g.f.: exp(z*(x + 2)) * (1 - x)/(exp(2*x*z) - x*exp(2*z))^(3/2) = Sum_{n >= 0} P(x,n)*z^n/n! = 1 + (2 + x)*z + (4 + 10*x + x^2)*z^2/2! + (8 + 60*x + 36*x^2 + x^3)*z^3/3! + ... .
Explicit formula for the row polynomials:
P(x,n-1) = Sum_{k = 1..n} 2^(n-2*k)*binomial(2k,k)*k!*Stirling2(n,k)*x^(k-1)*(1 - x)^(n-k).
The polynomials x*(1 + x)^n * P(x/(x + 1),n) are the row polynomials of A187075.
The polynomials x^(n+1) * P((x + 1)/x,n) are the row polynomials of A186695.
Row sums are A001147(n+1). (End)
Sum_{k = 0..n} (-1)^k*T(n,k) = (-1)^binomial(n,2)*A012259(n+1). - Johannes W. Meijer, Sep 27 2011

Extensions

Minor edits from Johannes W. Meijer, Sep 27 2011

A142963 Triangle read by rows, coefficients of the polynomials P(k, x) = (1/2) Sum_{p=0..k-1} Stirling2(k, p+1)*x^p*(1-4*x)^(k-1-p)*(2*p+2)!/(p+1)!.

Original entry on oeis.org

1, 1, 2, 1, 10, 4, 1, 30, 72, 8, 1, 74, 516, 464, 16, 1, 166, 2584, 7016, 2864, 32, 1, 354, 10740, 64240, 84480, 17376, 64, 1, 734, 40008, 450280, 1321760, 949056, 104704, 128, 1, 1498, 139108, 2681296, 14713840, 24198976, 10223488, 629248, 256, 1, 3030, 462264, 14341992
Offset: 1

Views

Author

Wolfdieter Lang, Sep 15 2008

Keywords

Comments

Previous name: Table of coefficients of row polynomials of certain o.g.f.s.
The o.g.f.s G(k, x) for the k-family of sequences S(k, n):= Sum_{p=0..n} p^k*binomial(2*p, p)*binomial(2*(n-p), n-p), k=0,1,... (convolution of two sequences involving the central binomial coefficients) are 1/(1-4*x) for k=0 and 2*x*P(k, x)/(1-4*x)^(k+1) for k=1,2,..., with the row polynomials P(k, x) = Sum_{m=0..k-1} a(n,m)*x^m).
The author was led to compute the sums S(k, n) by a question asked by M. Greiter, Jun 27 2008.
In order to keep the index k>=1 of Sigma(k, n) also for the polynomials P(k, x), their degree is then k-1.

Examples

			Triangle starts:
[1]
[1,   2]
[1,  10,     4]
[1,  30,    72,      8]
[1,  74,   516,    464,      16]
[1, 166,  2584,   7016,    2864,     32]
[1, 354, 10740,  64240,   84480,  17376,     64]
[1, 734, 40008, 450280, 1321760, 949056, 104704, 128]
...
P(3,x) = 1+10*x+4*x^2.
G(3,x) = 2*x*(1+10*x+4*x^2)/(1-4*x)^4.
		

Crossrefs

Left hand column sequences 2*A142964, 4*A142965, 8*A142966, 16*A142968.
Row sums A142967.
From Johannes W. Meijer, Feb 20 2009: (Start)
A156919 and this sequence can be mapped onto A156920.
Right hand column sequences 2^n*A000340, 2^n*A156922, 2^n*A156923, 2^n*A156924. (End)

Programs

  • Maple
    A142963 := proc(n,m): if n=m+1 then 2^(n-1); elif m=0 then 1 ; elif m<0 or m>n-1 then 0; else (m+1)*procname(n-1, m)+(4*n-4*m-2)*procname(n-1, m-1); end if; end proc: seq(seq(A142963(n,m), m=0..n-1), n=1..9); # Johannes W. Meijer, Sep 28 2011
    # Alternatively (assumes offset 0):
    p := (n,x) -> (1/2)*add(Stirling2(n+1,k+1)*x^k*(1-4*x)^(n-k)*(2*k+2)!/(k+1)!, k=0..n): for n from 0 to 7 do [n], PolynomialTools:-CoefficientList(p(n,x), x) od;
    # Peter Luschny, Jun 18 2017
  • Mathematica
    t[, 0] = 1; t[n, m_] /; m == n-1 := 2^m; t[n_, m_] := (m+1)*t[n-1, m] + (4*n-4*m-2)*t[n-1, m-1]; Table[t[n, m], {n, 1, 10}, {m, 0, n-1}] // Flatten (* Jean-François Alcover, Jun 21 2013, after Johannes W. Meijer *)

Formula

G(k, x) = Sum_{p=0..k} S2(k, p)*((2*p)!/p!)*x^p/(1-4*x)^(p+1), k >= 0 (here k >= 1), with the Stirling2 triangle S2(k, p):=A048993(k, p). (Proof from the product of the o.g.f.s of the two convoluted sequences and the normal ordering (x^d_x)^k = Sum_{p=0..k} S2(k, p)*x^p*d_x^p, with the derivative operator d_x.)
a(k,m) = [x^m]P(k, x) = [x^m] ((1-4*x)^(k+1))*G(k,x)/(2*x), k>=1, m=0,1,...,k-1.
For the triangle coefficients the following relation holds: T(n,m) = (m+1)*T(n-1,m) + (4*n-4*m-2)*T(n-1,m-1) with T(n,m=0) = 1 and T(n,m=n-1) = 2^(n-1), n >= 1 and 0 <= m <= n-1. - Johannes W. Meijer, Feb 20 2009
From Peter Bala, Jan 18 2018: (Start)
(x*d/dx)^n (1/(sqrt(1 - 4*x)) = 2*x*P(n,x)/sqrt(1 - 4*x)^(n+1/2) for n >= 1.
x*P(n,x)/(1 - 4*x)^(n+1/2) = (1/2)*Sum_{k >= 1} binomial(2*k,k)* k^n*x^k for n >= 1.
P(n+1,x) = ((4*n - 2)*x + 1)*P(n,x) - x*(4*x - 1)*d/dx(P(n,x)).
Hence the polynomial P(n,x) has all real zeros by Liu et al., Theorem 1.1, Corollary 1.2. (End)

Extensions

Minor edits by Johannes W. Meijer, Sep 28 2011
A more precise name by Peter Luschny, Jun 18 2017
Name reformulated with offset corrected, edited by Wolfdieter Lang, Aug 23 2019
Showing 1-10 of 17 results. Next