A156920
Triangle of the normalized A142963 and A156919 sequences.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 15, 18, 1, 1, 37, 129, 58, 1, 1, 83, 646, 877, 179, 1, 1, 177, 2685, 8030, 5280, 543, 1, 1, 367, 10002, 56285, 82610, 29658, 1636, 1, 1, 749, 34777, 335162, 919615, 756218, 159742, 4916, 1
Offset: 0
The first few rows of the triangle are:
[1]
[1, 1]
[1, 5, 1]
[1, 15, 18, 1]
[1, 37, 129, 58, 1]
[1, 83, 646, 877, 179, 1]
-
A156920 := proc(n,m): if n=m then 1; elif m=0 then 1 ; elif m<0 or m>n then 0; else (m+1)*procname(n-1, m)+(2*n-2*m+1)*procname(n-1, m-1) ; end if; end proc: seq(seq(A156920(n, m), m=0..n), n=0..8);
RHCnr:=5; RHCmax:=10; RHCend:=RHCnr+RHCmax: for k from RHCnr to RHCend do for n from 0 to k do S2[k,n]:=sum((-1)^(n+i)*binomial(n,i)*i^k/n!,i=0..n) end do: G(k,x):= sum(S2[k,p]*((2*p)!/p!) *x^p/(1-4*x)^(p+1),p=0..k)/(((-1)^(k+1)*2*x)/(-1+4*x)^(k+1)): fx:=simplify(G(k,x)): nmax:=degree(fx); RHC[k-RHCnr+1]:= coeff(fx,x,k-RHCnr)/2^(k-RHCnr) end do: a:=n-> RHC[n]: seq(a(n), n=1..RHCend-RHCnr);
LHCnr:=5; LHCmax:=10: LHCend:=LHCnr+LHCmax: for k from LHCnr to LHCend do for n from 0 to k do S2[k,n]:=sum((-1)^(n+i)*binomial(n,i)*i^k/n!,i=0..n) end do: G(k,x):= sum(S2[k,p]*((2*p)!/p!)*x^p/(1-4*x)^(p+1),p=0..k)/ (((-1)^(k+1)*2*x)/(-1+4*x)^(k+1)): fx:=simplify(G(k,x)): nmax:=degree(fx); for n from 0 to nmax do d[n]:= coeff(fx,x,n)/2^n end do: LHC[n]:=d[LHCnr-1] end do: a:=n-> LHC[n]: seq(a(n), n=LHCnr..LHCend-1);
-
T[, 0] = 1; T[n, n_] = 1; T[n_, m_] := T[n, m] = (m + 1)*T[n - 1, m] + (2*n - 2*m + 1)*T[n - 1, m - 1];
Table[T[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Nov 14 2017 *)
A142965
One fourth of third column (m=2) of triangle A142963.
Original entry on oeis.org
1, 18, 129, 646, 2685, 10002, 34777, 115566, 372453, 1175290, 3654369, 11245110, 34349005, 104373282, 315969705, 954002878, 2874983541, 8652474378, 26015617585, 78169534470, 234766551261, 704840716978, 2115654610809, 6349329417486, 19052920751365, 57169029907482
Offset: 0
-
[35/2+2*n^2+12*n-84*2^n-24*2^n*n+135/2*3^n: n in [0..25]]; // Vincenzo Librandi, Jun 18 2017
-
LinearRecurrence[{10,-40,82,-91,52,-12}, {1,18,129,646,2685,10002},30] (* or *) CoefficientList[Series[(1+8x-11x^2-6x^3)/((x-1)^3 (2x-1)^2 (3x-1)),{x,0,30}],x] (* Harvey P. Dale, Apr 24 2011 *)
A142966
Fourth column (m=3) of triangle A142963 divided by 8.
Original entry on oeis.org
1, 58, 877, 8030, 56285, 335162, 1792749, 8904486, 41949645, 190129090, 837258109, 3607669966, 15289404989, 63975698570, 265065915725, 1089837752118, 4454225465325, 18119738464530, 73441531708765, 296814738679390, 1196884383319261, 4817845684107098
Offset: 0
A142968
Fifth column (m=4) of triangle A142963 divided by 16=2^4.
Original entry on oeis.org
1, 179, 5280, 82610, 919615, 8284857, 64730022, 457217400, 2999230965, 18608607535, 110625457964, 636103699038, 3562753619915, 19541111960965, 105392471360850, 560747327119908, 2950726075955265, 15387821226034875, 79656442803398680, 409857988825489610
Offset: 0
Original entry on oeis.org
1, 3, 15, 111, 1071, 12663, 177255, 2866671, 52587711, 1078805223, 24470577495, 608113846431, 16429992037551, 479502707791383, 15032820820737735, 503852219871917391, 17978716725920562591, 680458944566818819143, 27227452811905815729975, 1148414905826479180087551
Offset: 1
A000340
a(0)=1, a(n) = 3*a(n-1) + n + 1.
Original entry on oeis.org
1, 5, 18, 58, 179, 543, 1636, 4916, 14757, 44281, 132854, 398574, 1195735, 3587219, 10761672, 32285032, 96855113, 290565357, 871696090, 2615088290, 7845264891, 23535794695, 70607384108, 211822152348, 635466457069
Offset: 0
G.f. = 1 + 5*x + 18*x^2 + 58*x^3 + 179*x^4 + 543*x^5 + 1636*x^6 + ...
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Dillan Agrawal, Selena Ge, Jate Greene, Tanya Khovanova, Dohun Kim, Rajarshi Mandal, Tanish Parida, Anirudh Pulugurtha, Gordon Redwine, Soham Samanta, and Albert Xu, Chip-Firing on Infinite k-ary Trees, arXiv:2501.06675 [math.CO], 2025. See pp. 9, 18.
- Shaoshi Chen, Hanqian Fang, Sergey Kitaev, and Candice X.T. Zhang, Patterns in Multi-dimensional Permutations, arXiv:2411.02897 [math.CO], 2024. See p. 7.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 389
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- László Tóth, On Schizophrenic Patterns in b-ary Expansions of Some Irrational Numbers, arXiv:2002.06584 [math.NT], 2020. Mentions this sequence. See also Proc. Amer. Math. Soc. 148 (2020), 461-469.
- Index entries for linear recurrences with constant coefficients, signature (5,-7,3).
Equals
A156920 second right hand column.
Equals
A142963 second right hand column divided by 2^n.
Equals
A156919 second right hand column divided by 2.
(End)
-
[(3^(n+2)-2*n-5)/4: n in [0..30]]; // Vincenzo Librandi, Aug 15 2011
-
a[ -1]:=0:a[0]:=1:for n from 1 to 50 do a[n]:=4*a[n-1]-3*a[n-2]+1 od: seq(a[n],n=0..50); # Miklos Kristof, Mar 09 2005
A000340:=-1/(3*z-1)/(z-1)**2; # conjectured by Simon Plouffe in his 1992 dissertation
-
a[ n_] := MatrixPower[ {{1, 0, 0}, {1, 1, 0}, {1, 1, 3}}, n + 1][[3, 1]]; (* Michael Somos, May 28 2014 *)
RecurrenceTable[{a[0]==1,a[n]==3a[n-1]+n+1},a,{n,30}] (* or *) LinearRecurrence[{5,-7,3},{1,5,18},30] (* Harvey P. Dale, Jan 31 2017 *)
A050488
a(n) = 3*(2^n-1) - 2*n.
Original entry on oeis.org
0, 1, 5, 15, 37, 83, 177, 367, 749, 1515, 3049, 6119, 12261, 24547, 49121, 98271, 196573, 393179, 786393, 1572823, 3145685, 6291411, 12582865, 25165775, 50331597, 100663243, 201326537, 402653127, 805306309, 1610612675, 3221225409, 6442450879, 12884901821, 25769803707
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Adam Buck, Jennifer Elder, Azia A. Figueroa, Pamela E. Harris, Kimberly Harry, and Anthony Simpson, Flattened Stirling Permutations, arXiv:2306.13034 [math.CO], 2023. See p. 14.
- Tamas Lengyel, On p-adic properties of the Stirling numbers of the first kind, Journal of Number Theory, 148 (2015) 73-94.
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Cf.
A000079,
A000225,
A000295,
A005408,
A008292,
A033484,
A054852,
A060724,
A066810,
A125165,
A126277,
A142963,
A156919,
A156920,
A156925.
-
List([0..30],n->3*(2^n-1)-2*n); # Muniru A Asiru, Oct 26 2018
-
a050488 n = sum $ zipWith (*) a000079_list (reverse $ take n a005408_list)
-- Reinhard Zumkeller, Jul 24 2015
-
[3*(2^n-1) - 2*n: n in [0..30]]; // G. C. Greubel, Oct 23 2018
-
seq(coeff(series(x*(x+1)/((1-x)^2*(1-2*x)),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 26 2018
-
Table[3(2^n-1)-2n,{n,0,30}] (* or *) LinearRecurrence[{4,-5,2}, {0,1,5}, 40] (* Harvey P. Dale, Apr 09 2018 *)
-
a(n)=3*(2^n-1)-2*n \\ Charles R Greathouse IV, Sep 24 2015
-
for n in range(0, 30): print(3*(2**n-1) - 2*n, end=', ') # Stefano Spezia, Oct 27 2018
A156919
Table of coefficients of polynomials related to the Dirichlet eta function.
Original entry on oeis.org
1, 2, 1, 4, 10, 1, 8, 60, 36, 1, 16, 296, 516, 116, 1, 32, 1328, 5168, 3508, 358, 1, 64, 5664, 42960, 64240, 21120, 1086, 1, 128, 23488, 320064, 900560, 660880, 118632, 3272, 1, 256, 95872, 2225728
Offset: 0
The first few rows of the triangle are:
[1]
[2, 1]
[4, 10, 1]
[8, 60, 36, 1]
[16, 296, 516, 116, 1]
The first few P(z;n) are:
P(z; n=0) = 1
P(z; n=1) = 2 + z
P(z; n=2) = 4 + 10*z + z^2
P(z; n=3) = 8 + 60*z + 36*z^2 + z^3
The first few SF(z;n) are:
SF(z; n=0) = (1/2)*(1)/(1-z)^(3/2);
SF(z; n=1) = (1/4)*(2+z)/(1-z)^(5/2);
SF(z; n=2) = (1/8)*(4+10*z+z^2)/(1-z)^(7/2);
SF(z; n=3) = (1/16)*(8+60*z+36*z^2+z^3)/(1-z)^(9/2);
In the Savage-Viswanathan paper, the coefficients appear as
1;
1, 2;
1, 10, 4;
1, 36, 60, 8;
1, 116, 516, 296, 16;
1, 358, 3508, 5168, 1328, 32;
1, 1086, 21120, 64240, 42960, 5664, 64;
...
- D. H. Lehmer, Interesting Series Involving the Central Binomial Coefficient, Am. Math. Monthly 92 (1985) 449-457, Polynomial V in eq (17). [R. J. Mathar, Feb 24 2009]
- Shi-Mei Ma, A family of two-variable derivative polynomials for tangent and secant, arXiv: 1204.4963v3 [math.CO], 2012.
- Shi-Mei Ma, A family of two-variable derivative polynomials for tangent and secant, El J. Combinat. 20 (1) (2013) P11
- S.-M. Ma and T. Mansour, The 1/k-Eulerian polynomials and k-Stirling permutations, arXiv preprint arXiv:1409.6525 [math.CO], 2014.
- S.-M. Ma and Y.-N. Yeh, Stirling permutations, cycle structures of permutations and perfect matchings, arXiv preprint arXiv:1503.06601 [math.CO], 2015.
- Carla D. Savage and Gopal Viswanathan, The 1/k-Eulerian polynomials, Elec. J. of Comb., Vol. 19, Issue 1, #P9 (2012).
- Eric Weisstein's World of Mathematics, Dirichlet Eta Function
-
A156919 := proc(n,m) if n=m then 1; elif m=0 then 2^n ; elif m<0 or m>n then 0; else 2*(m+1)*procname(n-1,m)+(2*n-2*m+1)*procname(n-1,m-1) ; end if; end proc: seq(seq(A156919(n,m), m=0..n), n=0..7); # R. J. Mathar, Feb 03 2011
-
g[0] = 1/Sqrt[1-x]; g[n_] := g[n] = 2x*D[g[n-1], x]; p[n_] := g[n] / g[0]^(2n+1) // Cancel; row[n_] := CoefficientList[p[n], x] // Rest; Table[row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Aug 09 2012, after Peter Bala *)
Flatten[Table[Rest[CoefficientList[Nest[2 x D[#, x] &, (1 - x)^(-1/2), k] (1 - x)^(k + 1/2), x]], {k, 10}]] (* Jan Mangaldan, Mar 15 2013 *)
A156922
Third right hand column (n-m=2) of the A156920 triangle.
Original entry on oeis.org
1, 15, 129, 877, 5280, 29658, 159742, 838038, 4323003, 22057825, 111750519, 563535483, 2833221970, 14216330916, 71243079660, 356731958812, 1785306330981, 8931761831331, 44675371382365
Offset: 0
Equals
A156920 third right hand column.
Equals
A156919 third right hand column divided by 4.
Equals
A142963 third right hand column divided by 2^n.
A156923
Fourth right hand column (n-m=3) of the A156920 triangle.
Original entry on oeis.org
1, 37, 646, 8030, 82610, 756218, 6411720, 51586344, 400011435, 3020658295, 22373863774, 163379472214, 1180488191108, 8462445970580, 60305767988960, 427848087263712, 3025286818472661
Offset: 0
Equals
A156920 fourth right hand column.
Equals
A156919 fourth right hand column divided by 8.
Equals
A142963 fourth right hand column divided by 2^n
Showing 1-10 of 14 results.
Comments