cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A014307 Expansion of the e.g.f. sqrt(exp(x) / (2 - exp(x))).

Original entry on oeis.org

1, 1, 2, 7, 35, 226, 1787, 16717, 180560, 2211181, 30273047, 458186752, 7596317885, 136907048461, 2665084902482, 55726440112987, 1245661569161135, 29642264728189066, 748158516941653967, 19962900431638852297, 561472467839585937560, 16602088291822017588121
Offset: 0

Views

Author

Keywords

Comments

The Hankel transform of this sequence is A121835. - Philippe Deléham, Aug 31 2006
a(n) is the moment of order (n-1) for the discrete measure associated to the weight rho(j + 1/2) = 2^(j + 1/2)/(Pi*binomial(2*j + 1, j + 1/2)), with j integral. So we have a(n) = Sum_{j >= 0} (j + 1/2)^(n-1)*rho(j + 1/2). - Groux Roland, Jan 05 2009
Let f(n) = Sum_{j >= 1} j^n*2^j/binomial(2*j, j) = r_n*Pi/2 + s_n; sequence gives r_{n-1}. For example, f(0) through f(5) are [1 + (1/2)*Pi, 3 + Pi, 11 + (7/2)*Pi, 55 + (35/2)*Pi, 355 + 113*Pi, 2807 + (1787/2)*Pi]. For s_n, see A180875. - N. J. A. Sloane, following a suggestion from Herb Conn, Feb 08 2011
Ren gives seven combinatorial interpretations for this sequence. - Peter Bala, Feb 01 2013
Number of left-right arrangements of [n] [Crane, 2015]. - N. J. A. Sloane, Nov 21 2014
In Dyson et al. (2010-2011, 2013), we have S_n(2) = Sum_{j>=1} j^n*2^j/binomial(2*j, j) = A014307(n+1)*Pi/2 + A180875(n) for n >= 1 (and S_0(2) is not defined). This series was originally defined by Lehmer (1985). - Petros Hadjicostas, May 14 2020

Crossrefs

Row sums of triangle A156920 (row sums (n) = a(n+1)). - Johannes W. Meijer, Feb 20 2009

Programs

  • GAP
    Concatenation([1], List([1..20], n-> Sum([1..n], k-> Sum([k..n], m-> Stirling2(n,m)*Factorial(m)*Binomial(m-1,k-1)*Binomial(2*k-2,k-1)*(-2)^(1-k)/k )))); # G. C. Greubel, Oct 20 2019
  • Magma
    m:=20; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( 1/Sqrt(2*Exp(-x)-1) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 30 2019
    
  • Maple
    seq(coeff(series(1/sqrt(2*exp(-x)-1), x, n+1)*n!, x, n), n = 0..20); # G. C. Greubel, Oct 20 2019
    a := n -> add((-1)^(n-k)*Stirling2(n,k)*doublefactorial(2*k-1), k=0..n):
    seq(a(n), n = 0..21); # Peter Luschny, Oct 19 2021
  • Mathematica
    a[n_] := Sum[ Sum[ StirlingS2[n, k]*k!*Binomial[k-1, m-1], {k, m, n}]/m*Binomial[2*m-2, m-1]*(-1)^(m-1)/2^(m-1), {m, 1, n}]; a[0]=1; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Sep 10 2012, after Vladimir Kruchinin *)
    CoefficientList[Series[Sqrt[E^x/(2-E^x)], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 07 2014 *)
    A014307 = ConstantArray[0,20]; A014307[[1]]=1; Do[A014307[[n+1]] = 1 + Sum[(-1+Binomial[n+1,j])*A014307[[j]],{j,1,n}],{n,1,19}]; Flatten[{1,A014307}] (* Vaclav Kotesovec after Jon Perry, Jan 07 2014 *)
  • Maxima
    a(n):=sum(sum(stirling2(n,k)*k!*binomial(k-1,m-1),k,m,n)/(m)* binomial(2*m-2,m-1)*(-1)^(m-1)/2^(m-1),m,1,n); /* Vladimir Kruchinin, May 10 2011 */
    
  • PARI
    {a(n)=n!*polcoeff((exp(x +x*O(x^n))/(2-exp(x +x*O(x^n))))^(1/2),n)} \\ Paul D. Hanna, Jan 24 2008
    
  • PARI
    /* As solution to integral equation: */ {a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=1+intformal(A^3*exp(-x+x*O(x^n))));n!*polcoeff(A,n)} \\ Paul D. Hanna, Jan 24 2008
    
  • Sage
    m = 20; T = taylor(1/sqrt(2*exp(-x)-1), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Jun 30 2019
    

Formula

a(n+1) = 1 + Sum_{j=1..n} (-1 + binomial(n+1,j))*a(j). - Jon Perry, Apr 25 2005, corrected by Vaclav Kotesovec, Jan 07 2014
The Hankel transform of this sequence is A121835. - Philippe Deléham, Aug 31 2006
E.g.f. A(x) satisfies A(x) = 1 + Integral_{t=0..x} (A(t)^3 * exp(-t)) dt. - Paul D. Hanna, Jan 24 2008 [Edited by Petros Hadjicostas, May 14 2020]
From Vladimir Kruchinin, May 10 2011: (Start)
a(n) = Sum_{m=1..n} (Sum_{k=m..n} Stirling2(n,k)*k!*binomial(k-1,m-1))*(1/m)*binomial(2*m-2,m-1)*(-1)^(m-1)/2^(m-1), n > 0.
E.g.f. B(x) = Integral_{t = 0..x} A(t) dt satisfies B'(x) = tan(B(x)) + sec(B(x)). (End)
From Peter Bala, Aug 25 2011: (Start)
It follows from Vladimir Kruchinin's formula above that
Sum_{n>=1} a(n-1)*x^n/n! = series reversion (Integral_{t = 0..x} 1/(sec(t)+tan(t)) dt) = series reversion (Integral_{t = 0..x} (sec(t)-tan(t)) dt) = series reversion (x - x^2/2! + x^3/3! - 2*x^4/4! + 5*x^5/5! - 16*x^6/6! + ...) = x + x^2/2! + 2*x^3/3! + 7*x^4/4! + 35*x^5/5! + 226*x^6/6! + ....
Let f(x) = sec(x) + tan(x). Define the nested derivative D^n[f](x) by means of the recursion D^0[f](x) = 1 and D^(n+1)[f](x) = (d/dx)(f(x)*D^n[f](x)) for n >= 0 (see A145271 for the coefficients in the expansion of D^n[f](x) in powers of f(x)). Then by [Dominici, Theorem 4.1] we have a(n) = D^n[f](0). Compare with A190392.
(End)
G.f.: 1/G(0) where G(k) = 1 - x*(2*k+1)/( 1 - x*(k+1)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 23 2013
a(n) ~ sqrt(2) * n^n / (exp(n) * (log(2))^(n+1/2)). - Vaclav Kotesovec, Jan 07 2014
G.f.: R(0)/(1-x), where R(k) = 1 - x^2*(k+1)*(2*k+1)/(x^2*(k+1)*(2*k+1) - (3*x*k+x-1)*(3*x*k+4*x-1)/R(k+1)); (continued fraction). - Sergei N. Gladkovskii, Jan 30 2014
a(0) = 1 and a(n) = a(n-1) + Sum_{k=1..n-1} binomial(n-1, k-1)*a(k) for n > 0. - Seiichi Manyama, Oct 20 2019
a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling2(n, k)*(2*k-1)!! (see Qi/Ward). - Peter Luschny, Oct 19 2021
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^k * (k/n - 2) * binomial(n,k) * a(n-k). - Seiichi Manyama, Nov 15 2023
Conjecture from Mikhail Kurkov, Jun 24 2025: (Start)
a(n) = R(n,0,2) where
R(0,0,m) = 1,
R(n,0,m) = Sum_{j=0..n-1} R(n-1,j,m),
R(n,k,m) = m*R(n,0,m) - Sum_{j=0..k-1} R(n-1,j,m) for 0 < k <= n.
More generally, R(n,0,m) gives expansion of the e.g.f. (exp(x) / (m - (m-1)*exp(x)))^(1/m) for any m>0. (End)

Extensions

Name edited by Petros Hadjicostas, May 14 2020

A136728 E.g.f.: A(x) = (exp(x)/(4 - 3*exp(x)))^(1/4).

Original entry on oeis.org

1, 1, 4, 31, 349, 5146, 93799, 2036161, 51283894, 1470035101, 47250248569, 1683031711516, 65800765032589, 2801364476781781, 129003301751229364, 6389120632590635971, 338644807090096148809, 19126604338708282552186
Offset: 0

Views

Author

Paul D. Hanna, Jan 24 2008

Keywords

Crossrefs

Cf. A201354, variants: A014307, A136727, A136729.

Programs

  • Mathematica
    CoefficientList[Series[(E^x/(4-3*E^x))^(1/4), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 15 2013 *)
  • PARI
    a(n)=n!*polcoeff((exp(x +x*O(x^n))/(4-3*exp(x +x*O(x^n))))^(1/4),n)
    
  • PARI
    /* As solution to integral equation: */ a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=1+intformal(A^4*exp(-x+x*O(x^n))));n!*polcoeff(A,n)

Formula

E.g.f. A(x) satisfies: A(x) = 1 + integral( A(x)^5 * exp(-x) ).
O.g.f.: 1/(1 - x/(1-3*x/(1 - 5*x/(1-6*x/(1 - 9*x/(1-9*x/(1 - 13*x/(1-12*x/(1 - 17*x/(1-15*x/(1 - ...))))))))))), a continued fraction.
G.f.: 1/G(0) where G(k) = 1 - x*(4*k+1)/( 1 - 3*x*(k+1)/G(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Mar 23 2013
a(n) ~ n! * Gamma(3/4)/(sqrt(2)*3^(1/4)*n^(3/4)*Pi*log(4/3)^(n+1/4)). - Vaclav Kotesovec, Jun 15 2013
a(n) = 1 + 3 * Sum_{k=1..n-1} (binomial(n,k) - 1) * a(k). - Ilya Gutkovskiy, Jul 09 2020
From Seiichi Manyama, Nov 15 2023: (Start)
a(n) = Sum_{k=0..n} (-1)^(n-k) * (Product_{j=0..k-1} (4*j+1)) * Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^k * (3*k/n - 4) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = a(n-1) + 3*Sum_{k=1..n-1} binomial(n-1,k) * a(n-k). (End)

A136727 E.g.f.: A(x) = (exp(x)/(3 - 2*exp(x)))^(1/3).

Original entry on oeis.org

1, 1, 3, 17, 139, 1481, 19443, 303297, 5480219, 112549881, 2589274883, 65957355377, 1842897053099, 56038776055081, 1842278768795923, 65109900167188257, 2461735422517374779, 99148196540813749081
Offset: 0

Views

Author

Paul D. Hanna, Jan 24 2008

Keywords

Comments

G.f. of variant A014307 is B(x) = sqrt(exp(x)/(2-exp(x))), which satisfies: B(x) = 1 + integral(B(x)^3*exp(-x)).

Examples

			E.g.f.: A(x) = 1 + x + 3/2*x^2 + 17/6*x^3 + 139/24*x^4 + 1481/120*x^5 +...
		

Crossrefs

Cf. A201339, variants: A014307, A136728, A136729.

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[(Exp[x]/(3-2Exp[x]))^(1/3),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 26 2013 *)
  • PARI
    {a(n) = n!*polcoeff((exp(x +x*O(x^n))/(3-2*exp(x +x*O(x^n))))^(1/3),n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    /* As solution to integral equation: */
    {a(n) = local(A=1+x+x*O(x^n)); for(i=0,n, A = 1 + intformal(A^4*exp(-x+x*O(x^n)))); n!*polcoeff(A,n)}
    for(n=0,25,print1(a(n),", "))

Formula

E.g.f. A(x) satisfies: A(x) = 1 + integral( A(x)^4 * exp(-x) ).
O.g.f.: 1/(1 - x/(1-2*x/(1 - 4*x/(1-4*x/(1 - 7*x/(1-6*x/(1 - 10*x/(1-8*x/(1 - 13*x/(1-10*x/(1 - ...))))))))))), a continued fraction.
G.f.: 1/G(0) where G(k) = 1 - x*(3*k+1)/( 1 - 2*x*(k+1)/G(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Mar 23 2013
a(n) ~ n! * sqrt(3)*2^(2/3)*Gamma(2/3)/(4*Pi*n^(2/3)*(log(3/2))^(n+1/3)). - Vaclav Kotesovec, Jun 25 2013
a(n) = 1 + 2 * Sum_{k=1..n-1} (binomial(n,k) - 1) * a(k). - Ilya Gutkovskiy, Jul 09 2020
From Seiichi Manyama, Nov 15 2023: (Start)
a(n) = Sum_{k=0..n} (-1)^(n-k) * (Product_{j=0..k-1} (3*j+1)) * Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^k * (2*k/n - 3) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = a(n-1) + 2*Sum_{k=1..n-1} binomial(n-1,k) * a(n-k). (End)

A367374 Expansion of the e.g.f. (exp(x) / (5 - 4*exp(x)))^(2/5).

Original entry on oeis.org

1, 2, 12, 128, 1944, 38264, 924936, 26507672, 878565000, 33058419032, 1392125985864, 64864749910424, 3313075222410504, 184071465908101592, 11051901784679926728, 713107430713993422872, 49208366812318404125832, 3616200105869781814285400
Offset: 0

Views

Author

Seiichi Manyama, Nov 15 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*prod(j=0, k-1, 5*j+2)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * (Product_{j=0..k-1} (5*j+2)) * Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^k * (3*k/n - 5) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 2*a(n-1) + 4*Sum_{k=1..n-1} binomial(n-1,k) * a(n-k).

A367375 Expansion of the e.g.f. (exp(x) / (5 - 4*exp(x)))^(3/5).

Original entry on oeis.org

1, 3, 21, 243, 3909, 80451, 2016885, 59610771, 2029183653, 78173046243, 3362038875093, 159665003673651, 8298290454862341, 468484406336978307, 28548397948780827957, 1867633303272817927635, 130551162799758211802469, 9710901131124428156535075
Offset: 0

Views

Author

Seiichi Manyama, Nov 15 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*prod(j=0, k-1, 5*j+3)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * (Product_{j=0..k-1} (5*j+3)) * Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^k * (2*k/n - 5) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 3*a(n-1) + 4*Sum_{k=1..n-1} binomial(n-1,k) * a(n-k).

A367376 Expansion of the e.g.f. (exp(x) / (5 - 4*exp(x)))^(4/5).

Original entry on oeis.org

1, 4, 32, 400, 6800, 146128, 3795728, 115616848, 4040024720, 159282704848, 6993908053520, 338443123424080, 17894609985867152, 1026351961130219728, 63466858180767590672, 4209071260503851502160, 298006515851074633361552, 22434758711582422326267856
Offset: 0

Views

Author

Seiichi Manyama, Nov 15 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*prod(j=0, k-1, 5*j+4)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * (Product_{j=0..k-1} (5*j+4)) * Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^k * (k/n - 5) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 4*a(n-1) + 4*Sum_{k=1..n-1} binomial(n-1,k) * a(n-k).
Showing 1-6 of 6 results.