A382629
Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = (n-k)*T(n-1,k-1) + 2*(k+1)*T(n-1,k) + A102365(n,k) with T(n,k) = 0 if k < 0 or k > n.
Original entry on oeis.org
1, 3, 0, 7, 4, 0, 15, 35, 5, 0, 31, 203, 115, 6, 0, 63, 994, 1428, 315, 7, 0, 127, 4470, 13421, 7450, 783, 8, 0, 255, 19185, 108156, 121314, 32865, 1839, 9, 0, 511, 80161, 793704, 1593902, 870191, 130665, 4171, 10, 0, 1023, 329648, 5483093, 18269658, 17591035, 5383906, 485166, 9251, 11, 0
Offset: 0
Triangle begins:
1;
3, 0;
7, 4, 0;
15, 35, 5, 0;
31, 203, 115, 6, 0;
63, 994, 1428, 315, 7, 0;
127, 4470, 13421, 7450, 783, 8, 0;
255, 19185, 108156, 121314, 32865, 1839, 9, 0;
511, 80161, 793704, 1593902, 870191, 130665, 4171, 10, 0;
...
-
a102365(n, k) = if(k==0, 1, if(nn, 0, (n-k)*T(n-1, k-1)+2*(k+1)*T(n-1, k)+a102365(n, k));
A185410
A decomposition of the double factorials A001147.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 10, 4, 0, 1, 36, 60, 8, 0, 1, 116, 516, 296, 16, 0, 1, 358, 3508, 5168, 1328, 32, 0, 1, 1086, 21120, 64240, 42960, 5664, 64, 0, 1, 3272, 118632, 660880, 900560, 320064, 23488, 128, 0, 1, 9832, 638968, 6049744, 14713840, 10725184, 2225728, 95872, 256, 0
Offset: 0
Triangle begins:
1,
1, 0,
1, 2, 0,
1, 10, 4, 0,
1, 36, 60, 8, 0,
1, 116, 516, 296, 16, 0,
1, 358, 3508, 5168, 1328, 32, 0,
1, 1086, 21120, 64240, 42960, 5664, 64, 0,
1, 3272, 118632, 660880, 900560, 320064, 23488, 128, 0,
1, 9832, 638968, 6049744, 14713840, 10725184, 2225728, 95872, 256, 0,
...
In the Savage-Viswanathan paper, the coefficients appear as
1
1 2
1 10 4
1 36 60 8
1 116 516 296 16
1 358 3508 5168 1328 32
1 1086 21120 64240 42960 5664 64
...
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- S.-M. Ma and T. Mansour, The 1/k-Eulerian polynomials and k-Stirling permutations, arXiv preprint arXiv:1409.6525 [math.CO], 2014.
- C. D. Savage and G. Viswanathan, The 1/k-Eulerian polynomials, Elec. J. of Comb., Vol. 19, Issue 1, #P9 (2012).
-
T[0, 0] := 1; T[n_, -1] := 0; T[n_, n_] := 0; T[n_, k_] := T[n, k] = (n - k)*T[n - 1, k - 1] + (2*k + 1)*T[n - 1, k]; Join[{1}, Table[If[k < 0, 0, If[k >= n, 0, 2^k*T[n, k]]], {n, 1, 5}, {k, 0, n}] // Flatten] (* G. C. Greubel, Jun 30 2017 *)
A211399
Triangle T(n,k), 0 <= k <= n, given by (0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, ...) DELTA (1, 0, 3, 0, 5, 0, 7, 0, 9, 0, ...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 5, 1, 0, 1, 15, 18, 1, 0, 1, 37, 129, 58, 1, 0, 1, 83, 646, 877, 179, 1, 0, 1, 177, 2685, 8030, 5280, 543, 1, 0, 1, 367, 10002, 56285, 82610, 29658, 1636, 1, 0, 1, 749, 34777, 335162
Offset: 0
Triangle begins :
1
0, 1
0, 1, 1
0, 1, 5, 1
0, 1, 15, 18, 1
0, 1, 37, 129, 58, 1
0, 1, 83, 646, 877, 179, 1
Showing 1-3 of 3 results.
Comments