M. Lawrence Glasser has authored 3 sequences.
A246759
Nonnegative numbers k such that x^5 - x^4 + k is reducible.
Original entry on oeis.org
0, 2, 9, 48, 324, 1280, 3750, 9072, 19208, 36864, 50625, 65610, 82944, 110000, 175692, 269568, 399854, 576240, 810000, 1114112, 1503378, 1994544, 2606420, 3360000, 4278582, 5387888, 6716184, 8294400
Offset: 1
For k=2, x^5 - x^4 + 2 is reducible: x^5 - x^4 + 2 = (x+1) * (x^4 - 2*x^3 + 2*x^2 - 2*x + 2).
-
Select[Range[0,83*10^5],!IrreduciblePolynomialQ[x^5-x^4+#]&] (* Harvey P. Dale, Dec 11 2017 *)
-
for(n=0, 10^7, if( !polisirreducible(x^5-x^4+n), print1(n,", "))); \\ Joerg Arndt, Sep 06 2014
A179483
A(k,3) where A(k,n) = Sum_{m=1..k} (-1)^(m+1) *binomial(n,m)*m^k.
Original entry on oeis.org
3, -9, 6, 36, 150, 540, 1806, 5796, 18150, 55980, 171006, 519156, 1569750, 4733820, 14250606, 42850116, 128746950, 386634060, 1160688606, 3483638676, 10454061750, 31368476700, 94118013006, 282379204836, 847187946150, 2541664501740, 7625194831806
Offset: 1
-
A179483 := proc(n) add( (-1)^(m+1)*binomial(3,m)*m^n,m=1..n) ; end proc: # R. J. Mathar, Jan 31 2011
-
Sum[(-1)^(m+1)Binomial[3,m]m^k,{m,1,k}]
-
Vec(3*x*(1 - 9*x + 31*x^2 - 39*x^3 + 18*x^4) / ((1 - x)*(1 - 2*x)*(1 - 3*x)) + O(x^30)) \\ Colin Barker, May 21 2017
A020496
From the ground state energy of a variant of the Hubbard Hamiltonian for 2 holes on a lattice of n sites.
Original entry on oeis.org
1, 4, 19, 55, 181, 461
Offset: 4
Comments