cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A259852 Numerators of the terms of Lehmer's series S_2(2), where S_k(x) = Sum_{n>=1} n^k*x^n/binomial(2*n, n).

Original entry on oeis.org

1, 8, 18, 128, 200, 192, 784, 8192, 10368, 25600, 30976, 147456, 173056, 401408, 10240, 8388608, 9469952, 7077888, 23658496, 20971520, 38535168, 253755392, 277348352, 268435456, 2621440000, 5670699008, 6115295232, 3758096384, 28219277312, 60397977600
Offset: 1

Views

Author

Jean-François Alcover, Jul 07 2015

Keywords

Examples

			1/1, 8/3, 18/5, 128/35, 200/63, 192/77, 784/429, ... = A259852/A259853.
		

Crossrefs

Cf. A014307, A180875, A259853 (denominators).

Programs

  • Mathematica
    Table[2^n*n^2/Binomial[2*n, n] // Numerator, {n, 1, 40}]
  • PARI
    vector(40, n, numerator(n^2*2^n/binomial(2*n,n))) \\ Michel Marcus, Jul 07 2015

Formula

a(n) = numerator(n^2*2^n/C(2*n,n)).
S_2(2) = Sum_{n>=1} 2^n*n^2/binomial(2*n, n) = 3F2([2,2,2]; [1,3/2]; 1/2) = 11 + 7*Pi/2. [Corrected by Petros Hadjicostas, May 14 2020]
Showing 1-1 of 1 results.