cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A181334 Let f(n) = Sum_{j>=1} j^n/binomial(2*j,j) = r_n*Pi*sqrt(3)/3^{t_n} + s_n/3; sequence gives r_n.

Original entry on oeis.org

2, 2, 10, 74, 238, 938, 13130, 23594, 1298462, 26637166, 201403930, 5005052234, 135226271914, 1315508114654, 13747435592810, 153590068548062, 202980764290906, 69141791857625242, 2766595825017102650, 38897014541363246798, 1724835471991750464238, 80219728936311383557694
Offset: 0

Views

Author

N. J. A. Sloane, Feb 09 2011, following a suggestion from Herb Conn

Keywords

Crossrefs

Cf. A098830 (s_n), A185585 (t_n), A181374, A180875, A014307.

Programs

  • Maple
    LehmerSer := n -> 2*add(add((-1)^p*(m!/((p+1)*3^(m+2)))*Stirling2(n+1,m)
    *binomial(2*p, p)*binomial(m-1, p), p=0..m-1), m=1..n+1):
    a := n -> numer(LehmerSer(n)): seq(a(n), n=0..21);
    # (after Petros Hadjicostas) Peter Luschny, May 15 2020
  • Mathematica
    f[n_] := Sum[j^n/Binomial[2*j, j], {j, 1, Infinity}];
    a[n_] := Expand[ FunctionExpand[ f[n] ] ][[2, 1]] // Numerator;
    Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Nov 24 2017 *)
  • PARI
    a(n)=numerator(2*sum(m=1, n+1, sum(p=0, m-1, (-1)^p*(m!/((p+1)*3^(m+2)))*stirling(n+1,m,2)*binomial(2*p,p)*binomial(m-1,p)))) \\ Petros Hadjicostas, May 15 2020

Formula

a(n) = numerator(2*Sum_{m=1..n+1} Sum_{p=0..m-1} (-1)^p * (m!/((p+1)*3^(m+2))) * Stirling2(n+1,m) * binomial(2*p,p) * binomial(m-1,p)). [It follows from Theorem 1 in Dyson et al. (2010-2011, 2013).] - Petros Hadjicostas, May 15 2020

Extensions

a(11)-a(21) from Nathaniel Johnston, Apr 07 2011

A185585 Let f(n) = Sum_{j>=1} j^n/binomial(2*j,j) = r_n*Pi*sqrt(3)/3^{t_n} + s_n/3; sequence gives t_n.

Original entry on oeis.org

3, 3, 4, 5, 5, 5, 6, 5, 7, 8, 8, 9, 10, 10, 10, 10, 8, 11, 12, 12, 13, 14, 14, 13, 15, 13, 16, 17, 17, 18, 19, 19, 19, 20, 19, 21, 22, 22, 23, 24, 24, 24, 24, 23, 24, 25, 25, 26, 27, 27, 26, 28, 26, 29, 30, 30, 31, 32
Offset: 0

Views

Author

N. J. A. Sloane, Feb 09 2011, following a suggestion from Herb Conn

Keywords

Crossrefs

Cf. A098830 (s_n), A181334 (r_n), A181374, A180875, A014307.

Programs

  • Maple
    # The function LehmerSer is defined in A181334.
    a := n -> ilog[3](denom(LehmerSer(n))):
    seq(a(n), n=0..57); # Peter Luschny, May 15 2020
  • Mathematica
    f[n_] := Sum[j^n/Binomial[2*j, j], {j, 1, Infinity}];
    a[n_] := 1 + Log[3, Denominator[Expand[FunctionExpand[f[n]]][[2, 1]]]];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 60}] (* Jean-François Alcover, Nov 24 2017 *)
  • PARI
    a(n) = logint(denominator(2*sum(m=1, n+1, sum(p=0, m-1, (-1)^p*(m!/((p+1)*3^(m+2)))*stirling(n+1,m,2)*binomial(2*p,p)*binomial(m-1,p)))), 3) \\ Petros Hadjicostas, May 14 2020

Formula

a(n) = ilog[3](denominator(2*Sum_{m=1..n+1} Sum_{p=0..m-1} (-1)^p * (m!/((p+1)*3^(m+2))) * Stirling2(n+1,m) * binomial(2*p,p) * binomial(m-1,p))), where ilog[3](3^k) = k. [It follows from Theorem 1 in Dyson et al. (2013).] - Petros Hadjicostas, May 14 2020

Extensions

a(11)-a(57) from Nathaniel Johnston, Apr 07 2011

A185672 Let f(n) = Sum_{j>=1} j^n*3^j/binomial(2*j,j) = r_n*Pi/sqrt(3) + s_n; sequence gives r_n.

Original entry on oeis.org

4, 20, 172, 2084, 32524, 620900, 14014732, 365100644, 10781360524, 355869575780, 12984066273292, 518879340911204, 22540052170064524, 1057507154836226660, 53291594817628483852, 2870834224548449841764, 164633490033421041392524, 10013579272685278891133540, 643872718978606529940390412
Offset: 0

Views

Author

N. J. A. Sloane, Feb 09 2011, following a suggestion from Herb Conn

Keywords

Crossrefs

Cf. A181374 (s_n), A180875 and A014307 (2^j rather than 3^j).

Programs

  • Mathematica
    f[n_] := Sum[j^n*3^j/Binomial[2*j, j], {j, 1, Infinity}];
    a[n_] := FindIntegerNullVector[{Pi/Sqrt[3], 1, N[-f[n], 20]}][[1]];
    Table[r = a[n]; Print[r]; r, {n, 0, 8}] (* Jean-François Alcover, Sep 05 2018 *)
    Table[Expand[FunctionExpand[FullSimplify[Sum[j^n*3^j/Binomial[2*j, j], {j, 1, Infinity}]]]][[2]] * Sqrt[3]/Pi, {n, 0, 20}] (* Vaclav Kotesovec, May 14 2020 *)
    S[k_, z_] := Sum[n!*(z/(4 - z))^n* StirlingS2[k + 1, n]*(1/n + Sum[(-1)^p*Pochhammer[1/2, p]/(p + 1)!* Binomial[n - 1, p]*(4/z)^(p + 1)*(Sqrt[z/(4 - z)]*ArcSin[Sqrt[z]/2] - 1/2*Sum[Gamma[l]/Pochhammer[1/2, l]*(z/4)^l, {l, 1, p}]), {p, 0, n - 1}]), {n, 1, k + 2}]; Table[Expand[Simplify[S[j, 3]]][[2]]*Sqrt[3]/Pi, {j, 0, 20}] (* Vaclav Kotesovec, May 15 2020 *)

Formula

a(n) ~ 2^(3/2) * n^(n+1) / (sqrt(3) * exp(n) * (log(4/3))^(n + 3/2)). - Vaclav Kotesovec, May 15 2020

Extensions

More terms from Vaclav Kotesovec, May 14 2020
Showing 1-3 of 3 results.