A181334 Let f(n) = Sum_{j>=1} j^n/binomial(2*j,j) = r_n*Pi*sqrt(3)/3^{t_n} + s_n/3; sequence gives r_n.
2, 2, 10, 74, 238, 938, 13130, 23594, 1298462, 26637166, 201403930, 5005052234, 135226271914, 1315508114654, 13747435592810, 153590068548062, 202980764290906, 69141791857625242, 2766595825017102650, 38897014541363246798, 1724835471991750464238, 80219728936311383557694
Offset: 0
Keywords
Links
- Petros Hadjicostas, Table of n, a(n) for n = 0..101
- F. J. Dyson, N. E. Frankel and M. L. Glasser, Lehmer's Interesting Series, arXiv:1009.4274 [math-ph], 2010-2011.
- F. J. Dyson, N. E. Frankel and M. L. Glasser, Lehmer's interesting series, Amer. Math. Monthly, 120 (2013), 116-130.
- D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Monthly, 92(7) (1985), 449-457.
Programs
-
Maple
LehmerSer := n -> 2*add(add((-1)^p*(m!/((p+1)*3^(m+2)))*Stirling2(n+1,m) *binomial(2*p, p)*binomial(m-1, p), p=0..m-1), m=1..n+1): a := n -> numer(LehmerSer(n)): seq(a(n), n=0..21); # (after Petros Hadjicostas) Peter Luschny, May 15 2020
-
Mathematica
f[n_] := Sum[j^n/Binomial[2*j, j], {j, 1, Infinity}]; a[n_] := Expand[ FunctionExpand[ f[n] ] ][[2, 1]] // Numerator; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Nov 24 2017 *)
-
PARI
a(n)=numerator(2*sum(m=1, n+1, sum(p=0, m-1, (-1)^p*(m!/((p+1)*3^(m+2)))*stirling(n+1,m,2)*binomial(2*p,p)*binomial(m-1,p)))) \\ Petros Hadjicostas, May 15 2020
Formula
a(n) = numerator(2*Sum_{m=1..n+1} Sum_{p=0..m-1} (-1)^p * (m!/((p+1)*3^(m+2))) * Stirling2(n+1,m) * binomial(2*p,p) * binomial(m-1,p)). [It follows from Theorem 1 in Dyson et al. (2010-2011, 2013).] - Petros Hadjicostas, May 15 2020
Extensions
a(11)-a(21) from Nathaniel Johnston, Apr 07 2011