A034691 Euler transform of powers of 2 [1,2,4,8,16,...].
1, 1, 3, 7, 18, 42, 104, 244, 585, 1373, 3233, 7533, 17547, 40591, 93711, 215379, 493735, 1127979, 2570519, 5841443, 13243599, 29953851, 67604035, 152258271, 342253980, 767895424, 1719854346, 3845443858
Offset: 0
Keywords
Examples
The normal multiset partitions for a(4) = 18: {{1111},{1222},{1122},{1112},{1233},{1223},{1123},{1234},{1,111},{1,122},{1,112},{1,123},{11,11},{11,12},{12,12},{1,1,11},{1,1,12},{1,1,1,1}}
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..3190 (first 300 terms from T. D. Noe)
- Vaclav Kotesovec, Asymptotics of sequence A034691.
- Vaclav Kotesovec, Asymptotics of the Euler transform of Fibonacci numbers, arXiv:1508.01796 [math.CO], Aug 07 2015.
- N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, arXiv:math/0307064 [math.CO], 2003; Order 21 (2004), 83-89.
- Thomas Wieder, An explicit formula for the n-th term.
- Thomas Wieder, The number of certain rankings and hierarchies formed from labeled or unlabeled elements and sets, Applied Mathematical Sciences, vol. 3, 2009, no. 55, 2707 - 2724. [From _Thomas Wieder_, Nov 14 2009]
Crossrefs
Programs
-
Maple
oo := 101: mul( 1/(1-x^j)^(2^(j-1)),j=1..oo): series(%,x,oo): t1 := seriestolist(%); A034691 := n-> t1[n+1]; with(combstruct); SetSeqSetU := [T, {T=Set(S), S=Sequence(U,card >= 1), U=Set(Z,card >=1)},unlabeled]; seq(count(SetSeqSetU,size=j),j=1..12); # Alternative, uses EulerTransform from A358369: a := EulerTransform(BinaryRecurrenceSequence(2, 0)): seq(a(n), n = 0..27); # Peter Luschny, Nov 17 2022
-
Mathematica
nn = 30; b = Table[2^n, {n, 0, nn}]; CoefficientList[Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}], x] (* T. D. Noe, Nov 21 2011 *) Table[SeriesCoefficient[E^(Sum[x^k/(1 - 2*x^k)/k, {k, 1, n}]), {x, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Sep 08 2014 *) allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]; allnmsp[0]={};allnmsp[1]={{{1}}};allnmsp[n_Integer]:=allnmsp[n]=Join[allnmsp[n-1],List/@allnorm[n],Join@@Function[ptn,Append[ptn,#]&/@Select[allnorm[n-Length[Join@@ptn]],OrderedQ[{Last[ptn],#}]&]]/@allnmsp[n-1]]; Apply[SequenceForm,Select[allnmsp[4],Length[Join@@#]===4&],{2}] (* to construct the example *) Table[Length[Complement[allnmsp[n],allnmsp[n-1]]],{n,1,8}] (* Gus Wiseman, Mar 03 2016 *)
-
PARI
A034691(n,l=1+O('x^(n+1)))={polcoeff(1/prod(k=1,n,(l-'x^k)^2^(k-1)),n)} \\ Michael Somos, Nov 21 2011, edited by M. F. Hasler, Jul 24 2017
-
SageMath
# uses[EulerTransform from A166861] a = BinaryRecurrenceSequence(2, 0) b = EulerTransform(a) print([b(n) for n in range(30)]) # Peter Luschny, Nov 11 2020
Formula
G.f.: 1 / Product_{n>=1} (1-x^n)^(2^(n-1)).
Recurrence: a(n) = (1/n) * Sum_{m=1..n} a(n-m)*c(m) where c(m) = A083413(m).
a(n) ~ c * 2^n * exp(sqrt(2*n)) / (sqrt(2*Pi) * exp(1/4) * 2^(3/4) * n^(3/4)), where c = exp( Sum_{k>=2} 1/(k*(2^k-2)) ) = 1.3976490050836502... (see A247003). - Vaclav Kotesovec, Sep 08 2014
Comments