cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 69 results. Next

A029635 The (1,2)-Pascal triangle (or Lucas triangle) read by rows.

Original entry on oeis.org

2, 1, 2, 1, 3, 2, 1, 4, 5, 2, 1, 5, 9, 7, 2, 1, 6, 14, 16, 9, 2, 1, 7, 20, 30, 25, 11, 2, 1, 8, 27, 50, 55, 36, 13, 2, 1, 9, 35, 77, 105, 91, 49, 15, 2, 1, 10, 44, 112, 182, 196, 140, 64, 17, 2, 1, 11, 54, 156, 294, 378, 336, 204, 81, 19, 2, 1, 12, 65, 210, 450, 672, 714, 540, 285, 100
Offset: 0

Views

Author

Keywords

Comments

This is also called Vieta's array. - N. J. A. Sloane, Nov 22 2017
Dropping the first term and changing the boundary conditions to T(n,1)=n, T(n,n-1)=2 (n>=2), T(n,n)=1 yields the number of nonterminal symbols (which generate strings of length k) in a certain context-free grammar in Chomsky normal form that generates all permutations of n symbols. Summation over k (1<=k<=n) results in A003945. For the number of productions of this grammar: see A090327. Example: 1; 2, 1; 3, 2, 1; 4, 5, 2, 1; 5, 9, 7, 2, 1; 6, 14, 16, 9, 2, 1; In addition to the example of A090327 we have T(3,3)=#{S}=1, T(3,2)=#{D,E}=2 and T(3,1)=#{A,B,C}=3. - Peter R. J. Asveld, Jan 29 2004
Much as the original Pascal triangle gives the Fibonacci numbers as sums of its diagonals, this triangle gives the Lucas numbers (A000032) as sums of its diagonals; see Posamentier & Lehmann (2007). - Alonso del Arte, Apr 09 2012
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 04 2013
It appears that for the infinite set of (1,N) Pascal's triangles, the binomial transform of the n-th row (n>0), followed by zeros, is equal to the n-th partial sum of (1, N, N, N, ...). Example: for the (1,2) Pascal's triangle, the binomial transform of the second row followed by zeros, i.e., of (1, 3, 2, 0, 0, 0, ...), is equal to the second partial sum of (1, 2, 2, 2, ...) = (1, 4, 9, 16, ...). - Gary W. Adamson, Aug 11 2015
Given any (1,N) Pascal triangle, let the binomial transform of the n-th row (n>1) followed by zeros be Q(x). It appears that the binomial transform of the (n-1)-th row prefaced by a zero is Q(n-1). Example: In the (1,2) Pascal triangle the binomial transform of row 3: (1, 4, 5, 2, 0, 0, 0, ...) is A000330 starting with 1: (1, 5, 14, 30, 55, 91, ...). The binomial transform of row 2 prefaced by a zero and followed by zeros, i.e., of (0, 1, 3, 2, 0, 0, 0, ...) is (0, 1, 5, 14, 30, 55, ...). - Gary W. Adamson, Sep 28 2015
It appears that in the array accompanying each (1,N) Pascal triangle (diagonals of the triangle), the binomial transform of (..., 1, N, 0, 0, 0, ...) preceded by (n-1) zeros generates the n-th row of the array (n>0). Then delete the zeros in the result. Example: in the (1,2) Pascal triangle, row 3 (1, 5, 14, 30, ...) is the binomial transform of (0, 0, 1, 2, 0, 0, 0, ...) with the resulting zeros deleted. - Gary W. Adamson, Oct 11 2015
Read as a square array (similar to the Example section Sq(m,j), but with Sq(0,0)=0 and Sq(m,j)=P(m+1,j) otherwise), P(n,k) are the multiplicities of the eigenvalues, lambda_n = n(n+k-1), of the Laplacians on the unit k-hypersphere, given by Teo (and Choi) as P(n,k) = (2n-k+1)(n+k-2)!/(n!(k-1)!). P(n,k) is also the numerator of a Dirichlet series for the Minakashisundarum-Pleijel zeta function for the sphere. Also P(n,k) is the dimension of the space of homogeneous, harmonic polynomials of degree k in n variables (Shubin, p. 169). For relations to Chebyshev polynomials and simple Lie algebras, see A034807. - Tom Copeland, Jan 10 2016
For a relation to a formulation for a universal Lie Weyl algebra for su(1,1), see page 16 of Durov et al. - Tom Copeland, Jan 15 2016

Examples

			Triangle begins:
  [0] [2]
  [1] [1, 2]
  [2] [1, 3,  2]
  [3] [1, 4,  5,  2]
  [4] [1, 5,  9,  7,   2]
  [5] [1, 6, 14, 16,   9,  2]
  [6] [1, 7, 20, 30,  25, 11,  2]
  [7] [1, 8, 27, 50,  55, 36, 13,  2]
  [8] [1, 9, 35, 77, 105, 91, 49, 15, 2]
.
Read as a square, the array begins:
  n\k| 0  1   2    3    4    5
  --------------------------------------
  0 |  2  2   2    2    2    2   A040000
  1 |  1  3   5    7    9   11   A005408
  2 |  1  4   9   16   25   36   A000290
  3 |  1  5  14   30   55   91   A000330
  4 |  1  6  20   50  105  196   A002415
  5 |  1  7  27   77  182  378   A005585
  6 |  1  8  35  112  294  672   A040977
		

References

  • Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
  • Alfred S. Posamentier & Ingmar Lehmann, The (Fabulous) Fibonacci Numbers. New York: Prometheus Books (2007): 97 - 105.
  • M. Shubin and S. Andersson, Pseudodifferential Operators and Spectral Theory, Springer Series in Soviet Mathematics, 1987.

Crossrefs

Cf. A003945 (row sums), A007318, A034807, A061896, A029653 (row-reversed), A157000.
Sums along ascending antidiagonals give Lucas numbers, n>0.

Programs

  • Haskell
    a029635 n k = a029635_tabl !! n !! k
    a029635_row n = a029635_tabl !! n
    a029635_tabl = [2] : iterate
       (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [1,2]
    -- Reinhard Zumkeller, Mar 12 2012, Feb 23 2012
    
  • Maple
    T := proc(n, k) option remember;
    if n = k then 2 elif k = 0 then 1 else T(n-1, k-1) + T(n-1, k) fi end:
    for n from 0 to 8 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Dec 22 2024
  • Mathematica
    t[0, 0] = 2; t[n_, k_] := If[k < 0 || k > n, 0, Binomial[n, k] + Binomial[n-1, k-1]]; Flatten[Table[t[n, k], {n, 0, 11}, {k, 0, n}]] (* Jean-François Alcover, May 03 2011 *)
    (* The next program cogenerates A029635 and A029638. *)
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + v[n - 1, x]
    v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A029638  *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A029635 *)
    (* Clark Kimberling, Feb 20 2012 *)
    Table[Binomial[n,k]+Binomial[n-1,k-1],{n,0,20},{k,0,n}]//Flatten (* Harvey P. Dale, Feb 08 2024 *)
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, (n==0) + binomial(n, k) + binomial(n-1, k-1))}; /* Michael Somos, Jul 15 2003 */
    
  • Sage
    # uses[riordan_array from A256893]
    riordan_array((2-x)/(1-x), x/(1-x), 8) # Peter Luschny, Nov 09 2019

Formula

From Henry Bottomley, Apr 26 2002; (Start)
T(n, k) = T(n-1, k-1) + T(n-1, k).
T(n, k) = C(n, k) + C(n-1, k-1).
T(n, k) = C(n, k)*(n + k)/n.
T(n, k) = A007318(n, k) + A007318(n-1, k-1).
T(n, k) = A061896(n + k, k) but with T(0, 0) = 1 and T(1, 1) = 2.
Row sum is floor(3^2(n-1)) i.e., A003945. (End)
G.f.: 1 + (1 + x*y) / (1 - x - x*y). - Michael Somos, Jul 15 2003
G.f. for n-th row: (x+2*y)*(x+y)^(n-1).
O.g.f. for row n: (1+x)/(1-x)^(n+1). The entries in row n are the nonzero entries in column n of A053120 divided by 2^(n-1). - Peter Bala, Aug 14 2008
T(2n, n) - T(2n, n+1)= Catalan(n)= A000108(n). - Philippe Deléham, Mar 19 2009
With T(0, 0) = 1 : Triangle T(n, k), read by rows, given by [1,0,0,0,0,0,...] DELTA [2,-1,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 10 2011
With T(0, 0) = 1, as in the Example section below, this is known as Vieta's array. The LU factorization of the square array is given by Yang and Leida, equation 20. - Peter Bala, Feb 11 2012
For n > 0: T(n, k) = A097207(n-1, k), 0 <= k < n. - Reinhard Zumkeller, Mar 12 2012
For n > 0: T(n, k) = A029600(n, k) - A007318(n, k), 0 <= k <= n. - Reinhard Zumkeller, Apr 16 2012
Riordan array ((2-x)/(1-x), x/(1-x)). - Philippe Deléham, Mar 15 2013
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(1 + 4*x + 5*x^2/2! + 2*x^3/3!) = 1 + 5*x + 14*x^2/2! + 30*x^3/3! + 55*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 22 2014
For n>=1: T(n, 0) + T(n, 1) + T(n, 2) = A000217(n+1). T(n, n-2) = (n-1)^2. - Bob Selcoe, Mar 29 2016:

Extensions

More terms from David W. Wilson
a(0) changed to 2 (was 1) by Daniel Forgues, Jul 06 2010

A106566 Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, 1, 1, 1, 1, 1, 1, ... ] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ... ] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 5, 3, 1, 0, 14, 14, 9, 4, 1, 0, 42, 42, 28, 14, 5, 1, 0, 132, 132, 90, 48, 20, 6, 1, 0, 429, 429, 297, 165, 75, 27, 7, 1, 0, 1430, 1430, 1001, 572, 275, 110, 35, 8, 1, 0, 4862, 4862, 3432, 2002, 1001, 429, 154, 44, 9, 1
Offset: 0

Views

Author

Philippe Deléham, May 30 2005

Keywords

Comments

Catalan convolution triangle; g.f. for column k: (x*c(x))^k with c(x) g.f. for A000108 (Catalan numbers).
Riordan array (1, xc(x)), where c(x) the g.f. of A000108; inverse of Riordan array (1, x*(1-x)) (see A109466).
Diagonal sums give A132364. - Philippe Deléham, Nov 11 2007

Examples

			Triangle begins:
  1;
  0,   1;
  0,   1,   1;
  0,   2,   2,  1;
  0,   5,   5,  3,  1;
  0,  14,  14,  9,  4,  1;
  0,  42,  42, 28, 14,  5, 1;
  0, 132, 132, 90, 48, 20, 6, 1;
From _Paul Barry_, Sep 28 2009: (Start)
Production array is
  0, 1,
  0, 1, 1,
  0, 1, 1, 1,
  0, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1, 1, 1, 1, 1 (End)
		

Crossrefs

The three triangles A059365, A106566 and A099039 are the same except for signs and the leading term.
See also A009766, A033184, A059365 for other versions.
The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Magma
    A106566:= func< n,k | n eq 0 select 1 else (k/n)*Binomial(2*n-k-1, n-k) >;
    [A106566(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 06 2021
    
  • Maple
    A106566 := proc(n,k)
        if n = 0 then
            1;
        elif k < 0 or k > n then
            0;
        else
            binomial(2*n-k-1,n-k)*k/n ;
        end if;
    end proc: # R. J. Mathar, Mar 01 2015
  • Mathematica
    T[n_, k_] := Binomial[2n-k-1, n-k]*k/n; T[0, 0] = 1; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 18 2017 *)
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[1&, #(1-Sqrt[1-4#])/(2#)&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
  • PARI
    {T(n, k) = if( k<=0 || k>n, n==0 && k==0, binomial(2*n - k, n) * k/(2*n - k))}; /* Michael Somos, Oct 01 2022 */
  • Sage
    def A106566(n, k): return 1 if (n==0) else (k/n)*binomial(2*n-k-1, n-k)
    flatten([[A106566(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 06 2021
    

Formula

T(n, k) = binomial(2n-k-1, n-k)*k/n for 0 <= k <= n with n > 0; T(0, 0) = 1; T(0, k) = 0 if k > 0.
T(0, 0) = 1; T(n, 0) = 0 if n > 0; T(0, k) = 0 if k > 0; for k > 0 and n > 0: T(n, k) = Sum_{j>=0} T(n-1, k-1+j).
Sum_{j>=0} T(n+j, 2j) = binomial(2n-1, n), n > 0.
Sum_{j>=0} T(n+j, 2j+1) = binomial(2n-2, n-1), n > 0.
Sum_{k>=0} (-1)^(n+k)*T(n, k) = A064310(n). T(n, k) = (-1)^(n+k)*A099039(n, k).
Sum_{k=0..n} T(n, k)*x^k = A000007(n), A000108(n), A000984(n), A007854(n), A076035(n), A076036(n), A127628(n), A126694(n), A115970(n) for x = 0,1,2,3,4,5,6,7,8 respectively.
Sum_{k>=0} T(n, k)*x^(n-k) = C(x, n); C(x, n) are the generalized Catalan numbers.
Sum_{j=0..n-k} T(n+k,2*k+j) = A039599(n,k).
Sum_{j>=0} T(n,j)*binomial(j,k) = A039599(n,k).
Sum_{k=0..n} T(n,k)*A000108(k) = A127632(n).
Sum_{k=0..n} T(n,k)*(x+1)^k*x^(n-k) = A000012(n), A000984(n), A089022(n), A035610(n), A130976(n), A130977(n), A130978(n), A130979(n), A130980(n), A131521(n) for x= 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Aug 25 2007
Sum_{k=0..n} T(n,k)*A000108(k-1) = A121988(n), with A000108(-1)=0. - Philippe Deléham, Aug 27 2007
Sum_{k=0..n} T(n,k)*(-x)^k = A000007(n), A126983(n), A126984(n), A126982(n), A126986(n), A126987(n), A127017(n), A127016(n), A126985(n), A127053(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Oct 27 2007
T(n,k)*2^(n-k) = A110510(n,k); T(n,k)*3^(n-k) = A110518(n,k). - Philippe Deléham, Nov 11 2007
Sum_{k=0..n} T(n,k)*A000045(k) = A109262(n), A000045: Fibonacci numbers. - Philippe Deléham, Oct 28 2008
Sum_{k=0..n} T(n,k)*A000129(k) = A143464(n), A000129: Pell numbers. - Philippe Deléham, Oct 28 2008
Sum_{k=0..n} T(n,k)*A100335(k) = A002450(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A100334(k) = A001906(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A099322(k) = A015565(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A106233(k) = A003462(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A151821(k+1) = A100320(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A082505(k+1) = A144706(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A000045(2k+2) = A026671(n). - Philippe Deléham, Feb 11 2009
Sum_{k=0..n} T(n,k)*A122367(k) = A026726(n). - Philippe Deléham, Feb 11 2009
Sum_{k=0..n} T(n,k)*A008619(k) = A000958(n+1). - Philippe Deléham, Nov 15 2009
Sum_{k=0..n} T(n,k)*A027941(k+1) = A026674(n+1). - Philippe Deléham, Feb 01 2014
G.f.: Sum_{n>=0, k>=0} T(n, k)*x^k*z^n = 1/(1 - x*z*c(z)) where c(z) the g.f. of A000108. - Michael Somos, Oct 01 2022

Extensions

Formula corrected by Philippe Deléham, Oct 31 2008
Corrected by Philippe Deléham, Sep 17 2009
Corrected by Alois P. Heinz, Aug 02 2012

A109466 Riordan array (1, x(1-x)).

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 0, -2, 1, 0, 0, 1, -3, 1, 0, 0, 0, 3, -4, 1, 0, 0, 0, -1, 6, -5, 1, 0, 0, 0, 0, -4, 10, -6, 1, 0, 0, 0, 0, 1, -10, 15, -7, 1, 0, 0, 0, 0, 0, 5, -20, 21, -8, 1, 0, 0, 0, 0, 0, -1, 15, -35, 28, -9, 1, 0, 0, 0, 0, 0, 0, -6, 35, -56, 36, -10, 1, 0, 0, 0, 0, 0, 0, 1, -21, 70, -84, 45, -11, 1, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Aug 28 2005

Keywords

Comments

Inverse is Riordan array (1, xc(x)) (A106566).
Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, -1, 1, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
Modulo 2, this sequence gives A106344. - Philippe Deléham, Dec 18 2008
Coefficient array of the polynomials Chebyshev_U(n, sqrt(x)/2)*(sqrt(x))^n. - Paul Barry, Sep 28 2009

Examples

			Rows begin:
  1;
  0,  1;
  0, -1,  1;
  0,  0, -2,  1;
  0,  0,  1, -3,  1;
  0,  0,  0,  3, -4,   1;
  0,  0,  0, -1,  6,  -5,   1;
  0,  0,  0,  0, -4,  10,  -6,   1;
  0,  0,  0,  0,  1, -10,  15,  -7,  1;
  0,  0,  0,  0,  0,   5, -20,  21, -8,  1;
  0,  0,  0,  0,  0,  -1,  15, -35, 28, -9, 1;
From _Paul Barry_, Sep 28 2009: (Start)
Production array is
  0,    1,
  0,   -1,    1,
  0,   -1,   -1,   1,
  0,   -2,   -1,  -1,   1,
  0,   -5,   -2,  -1,  -1,  1,
  0,  -14,   -5,  -2,  -1, -1,  1,
  0,  -42,  -14,  -5,  -2, -1, -1,  1,
  0, -132,  -42, -14,  -5, -2, -1, -1,  1,
  0, -429, -132, -42, -14, -5, -2, -1, -1, 1 (End)
		

Crossrefs

Cf. A026729 (unsigned version), A000108, A030528, A124644.

Programs

  • Magma
    /* As triangle */ [[(-1)^(n-k)*Binomial(k, n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jan 14 2016
  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[1&, #(1-#)&, 13] // Flatten (* Jean-François Alcover, Jul 16 2019 *)

Formula

Number triangle T(n, k) = (-1)^(n-k)*binomial(k, n-k).
T(n, k)*2^(n-k) = A110509(n, k); T(n, k)*3^(n-k) = A110517(n, k).
Sum_{k=0..n} T(n,k)*A000108(k)=1. - Philippe Deléham, Jun 11 2007
From Philippe Deléham, Oct 30 2008: (Start)
Sum_{k=0..n} T(n,k)*A144706(k) = A082505(n+1).
Sum_{k=0..n} T(n,k)*A002450(k) = A100335(n).
Sum_{k=0..n} T(n,k)*A001906(k) = A100334(n).
Sum_{k=0..n} T(n,k)*A015565(k) = A099322(n).
Sum_{k=0..n} T(n,k)*A003462(k) = A106233(n). (End)
Sum_{k=0..n} T(n,k)*x^(n-k) = A053404(n), A015447(n), A015446(n), A015445(n), A015443(n), A015442(n), A015441(n), A015440(n), A006131(n), A006130(n), A001045(n+1), A000045(n+1), A000012(n), A010892(n), A107920(n+1), A106852(n), A106853(n), A106854(n), A145934(n), A145976(n), A145978(n), A146078(n), A146080(n), A146083(n), A146084(n) for x = -12,-11,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12 respectively. - Philippe Deléham, Oct 27 2008
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A010892(n), A099087(n), A057083(n), A001787(n+1), A030191(n), A030192(n), A030240(n), A057084(n), A057085(n+1), A057086(n) for x = 0,1,2,3,4,5,6,7,8,9,10 respectively. - Philippe Deléham, Oct 28 2008
G.f.: 1/(1-y*x+y*x^2). - Philippe Deléham, Dec 15 2011
T(n,k) = T(n-1,k-1) - T(n-2,k-1), T(n,0) = 0^n. - Philippe Deléham, Feb 15 2012
Sum_{k=0..n} T(n,k)*x^(n-k) = F(n+1,-x) where F(n,x)is the n-th Fibonacci polynomial in x defined in A011973. - Philippe Deléham, Feb 22 2013
Sum_{k=0..n} T(n,k)^2 = A051286(n). - Philippe Deléham, Feb 26 2013
Sum_{k=0..n} T(n,k)*T(n+1,k) = -A110320(n). - Philippe Deléham, Feb 26 2013
For T(0,0) = 0, the signed triangle below has the o.g.f. G(x,t) = [t*x(1-x)]/[1-t*x(1-x)] = L[t*Cinv(x)] where L(x) = x/(1-x) and Cinv(x)=x(1-x) with the inverses Linv(x) = x/(1+x) and C(x)= [1-sqrt(1-4*x)]/2, an o.g.f. for the shifted Catalan numbers A000108, so the inverse o.g.f. is Ginv(x,t) = C[Linv(x)/t] = [1-sqrt[1-4*x/(t(1+x))]]/2 (cf. A124644 and A030528). - Tom Copeland, Jan 19 2016

A321620 The Riordan square of the Riordan numbers, triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 5, 5, 3, 1, 1, 6, 13, 10, 7, 4, 1, 1, 15, 29, 26, 16, 9, 5, 1, 1, 36, 73, 61, 42, 23, 11, 6, 1, 1, 91, 181, 157, 103, 61, 31, 13, 7, 1, 1, 232, 465, 398, 271, 156, 83, 40, 15, 8, 1, 1, 603, 1205, 1040, 702, 419, 221, 108, 50, 17, 9, 1, 1
Offset: 0

Views

Author

Peter Luschny, Nov 15 2018

Keywords

Comments

If gf is a generating function of the sequence a then by the 'Riordan square of a' we understand the integer triangle given by the Riordan array (gf, gf). This mapping can be seen as an operator RS: Z[[x]] -> Mat[Z].
For instance A039599 is the Riordan square of the Catalan numbers, A172094 is the Riordan square of the little Schröder numbers and A063967 is the Riordan square of the Fibonacci numbers. The Riordan square of the simplest sequence of positive numbers (A000012) is the Pascal triangle.
The generating functions used are listed in the table below. They may differ slightly from those defined elsewhere in order to ensure that RS(a) is invertible (as a matrix). We understand this as a kind of normalization.
---------------------------------------------------------------------------
Sequence a | RS(a) | gf(a)
---------------------------------------------------------------------------
Catalan | A039599 | (1 - sqrt(1 - 4*x))/(2*x).
1, Riordan | A321620 | 1 + 2*x/(1 + x + sqrt(1 - 2*x - 3*x^2)).
Motzkin | A321621 | (1 - x - sqrt(1 - 2*x - 3*x^2))/(2*x^2).
Fine | A321622 | 1 + (1 - sqrt(1 - 4*x))/(3 - sqrt(1 - 4*x)).
large Schröder | A321623 | (1 - x - sqrt(1 - 6*x + x^2))/(2*x).
little Schröder | A172094 | (1 + x - sqrt(1 - 6*x + x^2))/(4*x).
Lucas | A321624 | 1 + x*(1 + 2*x)/(1 - x - x^2).
swinging factorial | A321625 | (1 + x/(1 - 4*x^2))/sqrt(1 - 4*x^2).
ternary trees ||A109956|| u = sqrt(x*3/4); sin(arcsin(3*u)/3)/u.
central trinomial | A116392 | 1/sqrt(1 - 2*x - 3*x^2)
Bell | A154380 | Sum_{k>=0} x^k/Product_{j=1..k}(1 - j*x).
(2*n-1)!! | A321627 | 1/(1-x/(1-2*x/(1-3*x/(1-4*x/(1-5*x/...
powers of 2 | A038208 | 1/(1 - 2*x).
the all 1's seq. | A007318 | 1/(1 - x).
Fibonacci | A063967 | 1/(1 - x - x^2).
tribonacci | A187889 | 1/(1 - x - x^2 - x^3).
tetranacci | A353593 | 1/(1 - x - x^2 - x^3 - x^4).
Jacobsthal | A322942 | (2*x^2-1)/((x + 1)*(2*x - 1))

Examples

			The triangle starts:
   [ 0]   1
   [ 1]   1    1
   [ 2]   0    1    1
   [ 3]   1    1    1   1
   [ 4]   1    3    2   1   1
   [ 5]   3    5    5   3   1   1
   [ 6]   6   13   10   7   4   1   1
   [ 7]  15   29   26  16   9   5   1  1
   [ 8]  36   73   61  42  23  11   6  1  1
   [ 9]  91  181  157 103  61  31  13  7  1 1
   [10] 232  465  398 271 156  83  40 15  8 1 1
		

Crossrefs

Programs

  • Maple
    RiordanSquare := proc(d, n, exp:=false) local td, M, k, m, u, j;
        series(d, x, n+1); td := [seq(coeff(%, x, j), j = 0..n)];
        M := Matrix(n); for k from 1 to n do M[k, 1] := td[k] od;
        for k from 1 to n-1 do for m from k to n-1 do
           M[m+1, k+1] := add(M[j, k]*td[m-j+2], j = k..m) od od;
        if exp then u := 1;
           for k from 1 to n-1 do u := u * k;
              for m from 1 to k do j := `if`(m = 1, u, j/(m-1));
                 M[k+1, m] := M[k+1, m] * j od od fi;
    M end:
    RiordanSquare(1 + 2*x/(1 + x + sqrt(1 - 2*x - 3*x^2)), 8);
  • Mathematica
    RiordanSquare[gf_, len_] := Module[{T}, T[n_, k_] := T[n, k] = If[k == 0, SeriesCoefficient[gf, {x, 0, n}], Sum[T[j, k-1] T[n-j, 0], {j, k-1, n-1}]]; Table[T[n, k], {n, 0, len-1}, {k, 0, n}]];
    M = RiordanSquare[1 + 2x/(1 + x + Sqrt[1 - 2x - 3x^2]), 12];
    M // Flatten (* Jean-François Alcover, Nov 24 2018 *)
  • Sage
    # uses[riordan_array from A256893]
    def riordan_square(gf, len, exp=false):
        return riordan_array(gf, gf, len, exp)
    riordan_square(1 + 2*x/(1 + x + sqrt(1 - 2*x - 3*x^2)), 10)
    # Alternatively, given a list S:
    def riordan_square_array(S):
        N = len(S)
        M = matrix(ZZ, N, N)
        for n in (0..N-1): M[n, 0] = S[n]
        for k in (1..N-1):
            for m in (k..N-1):
                M[m, k] = sum(M[j, k-1]*S[m-j] for j in (k-1..m-1))
        return M
    riordan_square_array([1, 1, 0, 1, 1, 3, 6, 15, 36]) # Peter Luschny, Apr 03 2020

Formula

Given a generating function g and an positive integer N compute the Taylor expansion at the origin t(k) = [x^k] g(x) for k in [0...N-1] and set T(n, 0) = t(n) for n in [0...N-1]. Then compute T(m, k) = Sum_{j in [k-1...m-1]} T(j, k - 1) t(m - j) for k in [1...N-1] and for m in [k...N-1]. The resulting (0, 0)-based lower triangular array is the Riordan square generated by g.

A119879 Exponential Riordan array (sech(x),x).

Original entry on oeis.org

1, 0, 1, -1, 0, 1, 0, -3, 0, 1, 5, 0, -6, 0, 1, 0, 25, 0, -10, 0, 1, -61, 0, 75, 0, -15, 0, 1, 0, -427, 0, 175, 0, -21, 0, 1, 1385, 0, -1708, 0, 350, 0, -28, 0, 1, 0, 12465, 0, -5124, 0, 630, 0, -36, 0, 1, -50521, 0, 62325, 0, -12810, 0, 1050, 0, -45, 0, 1
Offset: 0

Views

Author

Paul Barry, May 26 2006

Keywords

Comments

Row sums have e.g.f. exp(x)*sech(x) (signed version of A009006). Inverse of masked Pascal triangle A119467. Transforms the sequence with e.g.f. g(x) to the sequence with e.g.f. g(x)*sech(x).
Coefficients of the Swiss-Knife polynomials for the computation of Euler, tangent and Bernoulli number (triangle read by rows). Another version in A153641. - Philippe Deléham, Oct 26 2013
Relations to Green functions and raising/creation and lowering/annihilation/destruction operators are presented in Hodges and Sukumar and in Copeland's discussion of this sequence and 2020 pdf. - Tom Copeland, Jul 24 2020

Examples

			Triangle begins:
     1;
     0,    1;
    -1,    0,     1;
     0,   -3,     0,   1;
     5,    0,    -6,   0,   1;
     0,   25,     0, -10,   0,   1;
   -61,    0,    75,   0, -15,   0,   1;
     0, -427,     0, 175,   0, -21,   0,  1;
  1385,    0, -1708,   0, 350,   0, -28,  0,  1;
		

Crossrefs

Row sums are A155585. - Johannes W. Meijer, Apr 20 2011
Rows reversed: A081658.

Programs

  • Maple
    T := (n,k) -> binomial(n,k)*2^(n-k)*euler(n-k,1/2): # Peter Luschny, Jan 25 2009
  • Mathematica
    T[n_, k_] := Binomial[n, k] 2^(n-k) EulerE[n-k, 1/2];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2018, after Peter Luschny *)
  • PARI
    {T(n,k) = binomial(n,k)*2^(n-k)*(2/(n-k+1))*(subst(bernpol(n-k+1, x), x, 1/2) - 2^(n-k+1)*subst(bernpol(n-k+1, x), x, 1/4))};
    for(n=0,5, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 25 2019
  • Sage
    @CachedFunction
    def A119879_poly(n, x) :
        return 1 if n == 0  else add(A119879_poly(k, 0)*binomial(n, k)*(x^(n-k)-1+n%2) for k in range(n)[::2])
    def A119879_row(n) :
        R = PolynomialRing(ZZ, 'x')
        return R(A119879_poly(n,x)).coeffs()  # Peter Luschny, Jul 16 2012
    # Alternatively:
    
  • Sage
    # uses[riordan_array from A256893]
    riordan_array(sech(x), x, 9, exp=true) # Peter Luschny, Apr 19 2015
    

Formula

Number triangle whose k-th column has e.g.f. sech(x)*x^k/k!.
T(n,k) = C(n,k)*2^(n-k)*E_{n-k}(1/2) where C(n,k) is the binomial coefficient and E_{m}(x) are the Euler polynomials. - Peter Luschny, Jan 25 2009
The coefficients in ascending order of x^i of the polynomials p{0}(x) = 1 and p{n}(x) = Sum_{k=0..n-1; k even} binomial(n,k)*p{k}(0)*((n mod 2) - 1 + x^(n-k)). - Peter Luschny, Jul 16 2012
E.g.f.: exp(x*z)/cosh(x). - Peter Luschny, Aug 01 2012
Sum_{k=0..n} T(n,k)*x^k = A122045(n), A155585(n), A119880(n), A119881(n) for x = 0, 1, 2, 3 respectively. - Philippe Deléham, Oct 27 2013
With all offsets 0, let A_n(x;y) = (y + E.(x))^n, an Appell sequence in y where E.(x)^k = E_k(x) are the Eulerian polynomials of A123125. Then the row polynomials of A046802 (the h-polynomials of the stellahedra) are given by h_n(x) = A_n(x;1); the row polynomials of A248727 (the face polynomials of the stellahedra), by f_n(x) = A_n(1 + x;1); the Swiss-knife polynomials of this entry, A119879, by Sw_n(x) = A_n(-1;1 + x); and the row polynomials of the Worpitsky triangle (A130850), by w_n(x) = A(1 + x;0). Other specializations of A_n(x;y) give A090582 (the f-polynomials of the permutohedra, cf. also A019538) and A028246 (another version of the Worpitsky triangle). - Tom Copeland, Jan 24 2020
Triangle equals P*((I + P^2)/2)^(-1), where P denotes Pascal's triangle A007318. - Peter Bala, Mar 07 2024

A066325 Coefficients of unitary Hermite polynomials He_n(x).

Original entry on oeis.org

1, 0, 1, -1, 0, 1, 0, -3, 0, 1, 3, 0, -6, 0, 1, 0, 15, 0, -10, 0, 1, -15, 0, 45, 0, -15, 0, 1, 0, -105, 0, 105, 0, -21, 0, 1, 105, 0, -420, 0, 210, 0, -28, 0, 1, 0, 945, 0, -1260, 0, 378, 0, -36, 0, 1, -945, 0, 4725, 0, -3150, 0, 630, 0, -45, 0, 1, 0, -10395, 0, 17325, 0, -6930, 0, 990, 0, -55, 0, 1
Offset: 0

Views

Author

Christian G. Bower, Dec 14 2001

Keywords

Comments

Also number of involutions on n labeled elements with k fixed points times (-1)^(number of 2-cycles).
Also called normalized Hermite polynomials.
He_n(x) := H_n(x/sqrt(2)) / sqrt(2)^n, with the coefficients of H_n(x) given in A060821. See the Maple program. - Wolfdieter Lang, Jan 13 2020

Examples

			Triangle begins:
    1;
    0,     1;
   -1,     0,   1;
    0,    -3,   0,    1;
    3,     0,  -6,    0,   1;
    0,    15,   0,  -10,   0,   1;
  -15,     0,  45,    0, -15,   0,  1;
    0,  -105,   0,  105,   0, -21,  0, 1;
  ...
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, pp. 89,94 (2.3.41,54).

Crossrefs

Row sums: A001464 (with different signs).
Row sums of absolute values: A000085.
Absolute values are given in A099174.
Cf. A159834, A001147, A060821 (Hermite H_n(x)).

Programs

  • Maple
    Q:= [seq(orthopoly[H](n,x/sqrt(2))/2^(n/2), n=0..20)]:
    seq(seq(coeff(Q[n+1],x,k),k=0..n),n=0..20); # Robert Israel, Jan 01 2016
    # Alternative:
    T := proc(n,k) option remember; if k > n then 0 elif n = k then 1 else
    (T(n, k+2)*(k+2)*(k+1))/(k-n) fi end:
    seq(print(seq(T(n, k), k = 0..n)), n = 0..10); # Peter Luschny, Jan 08 2023
  • Mathematica
    H[0, x_] = 1; H[1, x_] := x; H[n_, x_] := H[n, x] = x*H[n-1, x] - (n-1)*H[n-2, x] // Expand; Table[CoefficientList[H[n, x], x], {n, 0, 11}] // Flatten (* Jean-François Alcover, May 11 2015 *)
  • PARI
    for(n=0, 12, for(k=0,n, print1(if(Mod(n-k,2)==0, (-2)^((k-n)/2)*n!/(k!*((n-k)/2)!), 0), ", "))) \\ G. C. Greubel, Nov 23 2018
  • Python
    from sympy import Poly
    from sympy.abc import x
    def H(n, x): return 1 if n==0 else x if n==1 else x*H(n - 1, x) - (n - 1)*H(n - 2, x)
    def a(n): return Poly(H(n, x), x).all_coeffs()[::-1]
    for n in range(21): print(a(n)) # Indranil Ghosh, May 26 2017
    
  • Sage
    def A066325_row(n):
        T = [0]*(n+1)
        if n==1: return [1]
        for m in (1..n-1):
            a,b,c = 1,0,0
            for k in range(m,-1,-1):
                r = a - (k+1)*c
                if k < m : T[k+2] = u;
                a,b,c = T[k-1],a,b
                u = r
            T[1] = u;
        return T[1:]
    for n in (1..11): A066325_row(n)  # Peter Luschny, Nov 01 2012
    
  • Sage
    # uses[riordan_array from A256893]
    riordan_array(exp(-x^2/2), x, 8, True) # Peter Luschny, Nov 23 2018
    

Formula

T(n, k) = (-2)^((k-n)/2)*n!/(k!*((n-k)/2)!) for n-k even, 0 otherwise.
E.g.f. of row polynomials {He_n(y)}: A(x, y) = exp(x*y - x^2/2).
The umbral compositional inverses (cf. A001147) of the polynomials He(n,x) are given by the same polynomials unsigned, A099174. - Tom Copeland, Nov 15 2014
Exp(-D^2/2) x^n = He_n(x) = p_n(x+1) with D = d/dx and p_n(x), the row polynomials of A159834. These are an Appell sequence of polynomials with lowering and raising operators L = D and R = x - D. - Tom Copeland, Jun 26 2018

A097807 Riordan array (1/(1+x),1) read by rows.

Original entry on oeis.org

1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1
Offset: 0

Views

Author

Paul Barry, Aug 25 2004

Keywords

Comments

Columns have g.f. x^k/(1+x).
Row sums are A059841. Diagonal sums are (-1)^n*A008619 with g.f. 1/((1+x)(1-x^2)).
Inverse of A097806. Equals B^(-1)*A097805, where B is the binomial matrix.

Examples

			Rows begin
1;
-1,1;
1,-1,1;
-1,1,-1,1;
1,-1,1,-1,1;
		

Crossrefs

Programs

  • Haskell
    a097807 n k = a097807_tabl !! n !! k
    a097807_row n = a097807_tabl !! n
    a097807_tabl = iterate(\xs@(x:_) -> - x : xs) [1]
    -- Reinhard Zumkeller, Sep 17 2014
  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    rows = 12;
    R = RiordanArray[1/(1 + #)&, #&, rows];
    R // Flatten (* Jean-François Alcover, Jul 20 2019 *)

Formula

Triangle array of numbers T(n, k) with T(n, k)=if(n>=k, (-1)^(n-k), 0).
T(n+1,0) = -T(n,0), T(n+1,k+1) = T(n,k) for k = 1..n. - Reinhard Zumkeller, Sep 17 2014

A111594 Triangle of arctanh numbers.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 8, 0, 1, 0, 24, 0, 20, 0, 1, 0, 0, 184, 0, 40, 0, 1, 0, 720, 0, 784, 0, 70, 0, 1, 0, 0, 8448, 0, 2464, 0, 112, 0, 1, 0, 40320, 0, 52352, 0, 6384, 0, 168, 0, 1, 0, 0, 648576, 0, 229760, 0, 14448, 0, 240, 0, 1
Offset: 0

Views

Author

Wolfdieter Lang, Aug 23 2005

Keywords

Comments

Sheffer triangle associated to Sheffer triangle A060524.
For Sheffer triangles (matrices) see the explanation and S. Roman reference given under A048854.
The inverse matrix of A with elements a(n,m), n,m>=0, is given in A111593.
In the umbral calculus notation (see the S. Roman reference) this triangle would be called associated to (1,tanh(y)).
The row polynomials p(n,x):=sum(a(n,m)*x^m,m=0..n), together with the row polynomials s(n,x) of A060524 satisfy the exponential (or binomial) convolution identity s(n,x+y) = sum(binomial(n,k)*s(k,x)*p(n-k,y),k=0..n), n>=0.
Without the n=0 row and m=0 column and signed, this will become the Jabotinsky triangle A049218 (arctan numbers). For Jabotinsky matrices see the Knuth reference under A039692.
The row polynomials p(n,x) (defined above) have e.g.f. exp(x*arctanh(y)).
Exponential Riordan array [1, arctanh(x)] = [1, log(sqrt((1+x)/(1-x)))]. - Paul Barry, Apr 17 2008
Also the Bell transform of A005359. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

Examples

			Binomial convolution of row polynomials:
p(3,x)= 2*x+x^3; p(2,x)=x^2, p(1,x)= x, p(0,x)= 1,
together with those from A060524:
s(3,x)= 5*x+x^3; s(2,x)= 1+x^2, s(1,x)= x, s(0,x)= 1; therefore:
5*(x+y)+(x+y)^3 = s(3,x+y) = 1*s(0,x)*p(3,y) + 3*s(1,x)*p(2,y) + 3*s(2,x)*p(1,y) +1*s(3,x)*p(0,y) = 2*y+y^3 + 3*x*y^2 + 3*(1+x^2)*y + (5*x+x^3).
Triangle begins:
  1;
  0,   1;
  0,   0,    1;
  0,   2,    0,   1;
  0,   0,    8,   0,    1;
  0,  24,    0,  20,    0,  1;
  0,   0,  184,   0,   40,  0,   1;
  0, 720,    0, 784,    0, 70,   0, 1;
  0,   0, 8448,   0, 2464,  0, 112, 0, 1;
...
		

Crossrefs

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> `if`(n::even, n!, 0), 10); # Peter Luschny, Jan 27 2016
  • Mathematica
    rows = 10;
    t = Table[If[EvenQ[n], n!, 0], {n, 0, rows}];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
  • Sage
    # uses[riordan_array from A256893]
    riordan_array(1, atanh(x), 9, exp=true) # Peter Luschny, Apr 19 2015

Formula

E.g.f. for column m>=0: ((arctanh(x))^m)/m!.
a(n, m) = coefficient of x^n of ((arctanh(x))^m)/m!, n>=m>=0, else 0.
a(n, m) = a(n-1, m-1) + (n-2)*(n-1)*a(n-2, m), a(n, -1):=0, a(0, 0)=1, a(n, m)=0 for n

A130191 Square of the Stirling2 matrix A048993.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 5, 6, 1, 0, 15, 32, 12, 1, 0, 52, 175, 110, 20, 1, 0, 203, 1012, 945, 280, 30, 1, 0, 877, 6230, 8092, 3465, 595, 42, 1, 0, 4140, 40819, 70756, 40992, 10010, 1120, 56, 1, 0, 21147, 283944, 638423, 479976, 156072, 24570, 1932, 72, 1
Offset: 0

Author

Wolfdieter Lang, Jun 01 2007

Keywords

Comments

Without row n=0 and column k=0 this is triangle A039810.
This is an associated Sheffer matrix with e.g.f. of the m-th column ((exp(f(x))-1)^m)/m! with f(x)=:exp(x)-1.
The triangle is also called the exponential Riordan array [1, exp(exp(x)-1)]. - Peter Luschny, Apr 19 2015
Also the Bell transform of shifted Bell numbers A000110(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

Examples

			Triangle starts:
  1;
  0,   1;
  0,   2,    1;
  0,   5,    6,    1;
  0,  15,   32,   12,    1;
  0,  52,  175,  110,   20,   1;
  0, 203, 1012,  945,  280,  30,  1;
  0, 877, 6230, 8092, 3465, 595, 42, 1;
		

Crossrefs

Columns k=0..3 give A000007, A000110 (for n > 0), A000558, A000559.
Row sums: A000258.
Alternating row sums: A130410.
T(2n,n) gives A321712.
Cf. A039810 (another version), A048993.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> combinat:-bell(n+1), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 10;
    M = BellMatrix[BellB[# + 1]&, rows];
    Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
    a[n_, m_]:= Sum[StirlingS2[n, k]*StirlingS2[k, m], {k,m,n}]; Table[a[n, m], {n, 0, 100}, {m, 0, n}]//Flatten (* G. C. Greubel, Jul 10 2018 *)
  • PARI
    for(n=0, 9, for(k=0, n, print1(sum(j=k, n, stirling(n, j, 2)*stirling(j, k, 2)), ", "))) \\ G. C. Greubel, Jul 10 2018
  • Sage
    # uses[riordan_array from A256893]
    riordan_array(1, exp(exp(x) - 1), 8, exp=true) # Peter Luschny, Apr 19 2015
    

Formula

a(n,k) = Sum_{j=k..n} S2(n,j) * S2(j,k), n>=k>=0.
E.g.f. row polynomials with argument x: exp(x*f(f(z))).
E.g.f. column k: ((exp(exp(x) - 1) - 1)^k)/k!.

A236830 Riordan array (1/(1-x*C(x)^3), x*C(x)), C(x) the g.f. of A000108.

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 16, 7, 3, 1, 65, 27, 11, 4, 1, 267, 108, 43, 16, 5, 1, 1105, 440, 173, 65, 22, 6, 1, 4597, 1812, 707, 267, 94, 29, 7, 1, 19196, 7514, 2917, 1105, 398, 131, 37, 8, 1, 80380, 31307, 12111, 4597, 1680, 575, 177, 46, 9, 1, 337284, 130883, 50503, 19196, 7085, 2488, 808, 233, 56, 10, 1
Offset: 0

Author

Philippe Deléham, Feb 01 2014

Keywords

Comments

T(n+3,n) = A011826(n+5).

Examples

			Triangle begins:
      1;
      1,    1;
      4,    2,    1;
     16,    7,    3,    1;
     65,   27,   11,    4,   1;
    267,  108,   43,   16,   5,   1;
   1105,  440,  173,   65,  22,   6,  1;
   4597, 1812,  707,  267,  94,  29,  7, 1;
  19196, 7514, 2917, 1105, 398, 131, 37, 8, 1;
Production matrix is:
   1  1
   3  1   1
   6  1   1   1
  10  1   1   1   1
  15  1   1   1   1   1
  21  1   1   1   1   1   1
  28  1   1   1   1   1   1   1
  36  1   1   1   1   1   1   1   1
  45  1   1   1   1   1   1   1   1   1
  55  1   1   1   1   1   1   1   1   1   1
  66  1   1   1   1   1   1   1   1   1   1   1
  78  1   1   1   1   1   1   1   1   1   1   1   1
  91  1   1   1   1   1   1   1   1   1   1   1   1   1
  ...
		

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Sum([0..n-k], j-> Binomial(2*n-k-j-2, n-k-j)*Fibonacci(2*j-1) )))); # G. C. Greubel, Jul 18 2019
  • Magma
    [(&+[Binomial(2*n-k-j-2, n-k-j)*Fibonacci(2*j-1): j in [0..n-k]]): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 18 2019
    
  • Maple
    A236830 := (n,k) -> add(combinat:-fibonacci(2*i-1)*binomial(2*n-2-k-i,n-k-i), i = 0..n-k): seq(seq(A236830(n, k), k = 0..n), n = 0..10); # Peter Bala, Feb 18 2018
  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    c[x_] := (1 - Sqrt[1 - 4 x])/(2 x);
    RiordanArray[1/(1 - # c[#]^3)&, # c[#]&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
    Table[Sum[Binomial[2*n-k-j-2, n-k-j]*Fibonacci[2*j-1], {j,0,n-k}], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 18 2019 *)
  • PARI
    T(n,k) = sum(j=0,n-k, binomial(2*n-k-j-2, n-k-j)*fibonacci(2*j -1));
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 18 2019
    
  • Sage
    [[sum( binomial(2*n-k-j-2, n-k-j)*fibonacci(2*j -1) for j in (0..n-k) ) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 18 2019
    

Formula

Sum_{k=0..n} T(n,k) = A026726(n).
G.f.: 1/((x^2*C(x)^4-x*C(x))*y-x*C(x)^3+1), where C(x) the g.f. of A000108. - Vladimir Kruchinin, Apr 22 2015
From Peter Bala, Feb 18 2018: (Start)
T(n,k) = Sum_{i = 0..n-k} Fibonacci(2*i-1)*binomial(2*n-2-k-i,n-k-i).
The n-th row polynomial of row reverse triangle is the n-th degree Taylor polynomial of the rational function (1 - 3*x + 2*x^2)/(1 - 3*x + x^2) * 1/(1 - x)^n about 0. For example, for n = 4, (1 - 3*x + 2*x^2)/(1 - 3*x + x^2) * 1/(1 - x)^4 = 1 + 4*x + 11*x^2 + 27*x^3 + 65*x^4 + O(x^5), giving row 4 as (65, 27, 11, 4, 1). (End)
Showing 1-10 of 69 results. Next