A026726
a(n) = T(2n,n), T given by A026725.
Original entry on oeis.org
1, 2, 7, 27, 108, 440, 1812, 7514, 31307, 130883, 548547, 2303413, 9686617, 40783083, 171868037, 724837891, 3058850316, 12915186640, 54554594416, 230526280814, 974414815782, 4119854160332, 17422801069670, 73695109608352, 311768697325788, 1319136935150530
Offset: 0
-
List([0..30], n-> Sum([0..n], k-> (2*k+1)*Binomial(2*n,n-k)*
Fibonacci(k+1)/(n+k+1) )); # G. C. Greubel, Jul 16 2019
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 4*x*(1-Sqrt(1-4*x))/(8*x^2-(1-Sqrt(1-4*x))^3) )); // G. C. Greubel, Jul 16 2019
-
A026726 := proc(n)
A026725(2*n,n) ;
end proc:
seq(A026726(n),n=0..10) ; # R. J. Mathar, Oct 26 2019
-
CoefficientList[Series[4*x*(1-Sqrt[1-4*x])/(8*x^2-(1-Sqrt[1-4*x])^3), {x,0,30}], x] (* G. C. Greubel, Jul 16 2019 *)
-
my(x='x+O('x^30)); Vec(4*x*(1-sqrt(1-4*x))/(8*x^2-(1-sqrt(1-4*x))^3)) \\ G. C. Greubel, Jul 16 2019
-
(4*x*(1-sqrt(1-4*x))/(8*x^2-(1-sqrt(1-4*x))^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 16 2019
A026842
a(n) = T(2n,n-3), T given by A026725.
Original entry on oeis.org
1, 9, 56, 300, 1487, 7041, 32381, 146017, 649395, 2859231, 12494914, 54291912, 234860677, 1012433965, 4352210327, 18666918033, 79916230409, 341615895659, 1458457275715, 6220016154525, 26503542364381, 112847001503099, 480173686483581
Offset: 3
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-Sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1-Sqrt(1-4*x))^3 )) )); // G. C. Greubel, Jul 17 2019
-
Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^8/(32*x^3*(8*x^2 -(1 - Sqrt[1-4*x])^3 )), {x,0,30}], x],3] (* G. C. Greubel, Jul 17 2019 *)
-
my(x='x+O('x^30)); Vec((1-sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1 - sqrt(1-4*x))^3 ))) \\ G. C. Greubel, Jul 17 2019
-
a=((1-sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1-sqrt(1-4*x))^3 ))).series(x, 30).coefficients(x, sparse=False); a[3:] # G. C. Greubel, Jul 17 2019
A026846
a(n) = T(2n+1,n+4), T given by A026725.
Original entry on oeis.org
1, 9, 56, 300, 1487, 7041, 32381, 146017, 649395, 2859231, 12494914, 54291912, 234860677, 1012433965, 4352210327, 18666918033, 79916230409, 341615895659, 1458457275715, 6220016154525, 26503542364381, 112847001503099, 480173686483581
Offset: 3
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-Sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1-Sqrt(1-4*x))^3 )) )); // G. C. Greubel, Jul 17 2019
-
Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^8/(32*x^3*(8*x^2 -(1 - Sqrt[1-4*x])^3 )), {x,0,30}], x], 3] (* G. C. Greubel, Jul 17 2019 *)
-
my(x='x+O('x^30)); Vec((1-sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1 - sqrt(1-4*x))^3 ))) \\ G. C. Greubel, Jul 17 2019
-
a=((1-sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1-sqrt(1-4*x))^3 ))).series(x, 30).coefficients(x, sparse=False); a[3:] # G. C. Greubel, Jul 17 2019
A026849
a(n) = T(2n,n-3), T given by A026736.
Original entry on oeis.org
1, 9, 56, 300, 1487, 7041, 32381, 146017, 649395, 2859231, 12494914, 54291912, 234860677, 1012433965, 4352210327, 18666918033, 79916230409, 341615895659, 1458457275715, 6220016154525, 26503542364381, 112847001503099, 480173686483581
Offset: 3
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-Sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1-Sqrt(1-4*x))^3 )) )); // G. C. Greubel, Jul 17 2019
-
CoefficientList[Series[(1-Sqrt[1-4*x])^8/(32*x^3*(8*x^2 -(1-Sqrt[1-4*x])^3 )), {x,0,30}], x] (* G. C. Greubel, Jul 17 2019 *)
-
my(x='x+O('x^30)); Vec((1-sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1-sqrt(1-4*x))^3 ))) \\ G. C. Greubel, Jul 17 2019
-
a=((1-sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1-sqrt(1-4*x))^3 ))).series(x, 30).coefficients(x, sparse=False); a[3:] # G. C. Greubel, Jul 17 2019
A026841
a(n) = T(2n,n-4), T given by A026725.
Original entry on oeis.org
1, 11, 79, 471, 2535, 12809, 62067, 292085, 1345718, 6102780, 27343148, 121359692, 534632836, 2341151646, 10201950700, 44278673806, 191540714294, 826265471868, 3555992623850, 15273547250820, 65491352071266, 280412963707416
Offset: 4
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-4*x))^10/(128*x^4*(8*x^2 -(1-Sqrt(1-4*x))^3 )) )); // G. C. Greubel, Jul 17 2019
-
Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^10/(128*x^4*(8*x^2 -(1 - Sqrt[1-4*x])^3 )), {x,0,40}], x], 4] (* G. C. Greubel, Jul 17 2019 *)
-
my(x='x+O('x^40)); Vec((1-sqrt(1-4*x))^10/(128*x^4*(8*x^2 -(1 - sqrt(1-4*x))^3 ))) \\ G. C. Greubel, Jul 17 2019
-
a=((1-sqrt(1-4*x))^10/(128*x^4*(8*x^2 -(1-sqrt(1-4*x))^3 ))).series(x, 45).coefficients(x, sparse=False); a[4:40] # G. C. Greubel, Jul 17 2019
A026848
a(n) = T(2n,n-4), T given by A026736.
Original entry on oeis.org
1, 11, 79, 471, 2535, 12809, 62067, 292085, 1345718, 6102780, 27343148, 121359692, 534632836, 2341151646, 10201950700, 44278673806, 191540714294, 826265471868, 3555992623850, 15273547250820, 65491352071266, 280412963707416
Offset: 4
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-4*x))^10/(128*x^4*(8*x^2 -(1-Sqrt(1-4*x))^3 )) )); // G. C. Greubel, Jul 17 2019
-
Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^10/(128*x^4*(8*x^2 -(1 - Sqrt[1-4*x])^3 )), {x,0,40}], x], 4] (* G. C. Greubel, Jul 17 2019 *)
-
my(x='x+O('x^40)); Vec((1-sqrt(1-4*x))^10/(128*x^4*(8*x^2 -(1 - sqrt(1-4*x))^3 ))) \\ G. C. Greubel, Jul 17 2019
-
a=((1-sqrt(1-4*x))^10/(128*x^4*(8*x^2 -(1-sqrt(1-4*x))^3 ))).series(x, 45).coefficients(x, sparse=False); a[4:40] # G. C. Greubel, Jul 17 2019
A026672
a(n) = T(2n,n-1), T given by A026670. Also T(2n,n-1)=T(2n+1,n+2), T given by A026725; and T(2n,n-1), T given by A026736.
Original entry on oeis.org
1, 5, 22, 94, 398, 1680, 7085, 29877, 126021, 531751, 2244627, 9478605, 40040183, 169193597, 715143046, 3023492646, 12785541850, 54076955716, 228759017624, 967850695362, 4095387893312, 17331318506030
Offset: 2
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-Sqrt(1-4*x))^4/(2*(8*x^2 -(1-Sqrt(1-4*x))^3)) )); // G. C. Greubel, Jul 16 2019
-
Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^4/(2*(8*x^2 -(1-Sqrt[1-4*x] )^3)), {x,0,30}], x], 2] (* G. C. Greubel, Jul 16 2019 *)
-
my(x='x+O('x^30)); Vec( (1-sqrt(1-4*x))^4/(2*(8*x^2 -(1-sqrt(1-4*x))^3))) \\ G. C. Greubel, Jul 16 2019
-
a=((1-sqrt(1-4*x))^4/(2*(8*x^2 -(1-sqrt(1-4*x))^3))).series(x, 30).coefficients(x, sparse=False); a[2:] # G. C. Greubel, Jul 16 2019
A026673
a(n) = T(2n,n-2), T given by A026670.
Original entry on oeis.org
1, 7, 37, 177, 808, 3596, 15764, 68446, 295294, 1268356, 5430734, 23199304, 98933705, 421352919, 1792709561, 7621345733, 32380443643, 137504761035, 583684770103, 2476836131227, 10507517431481, 44566369523517, 188988331406117
Offset: 2
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-Sqrt(1-4*x))^6/(8*x^2*(8*x^2 -(1-Sqrt(1-4*x))^3)) )); // G. C. Greubel, Jul 16 2019
-
Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^6/(8*x^2*(8*x^2-(1-Sqrt[1 - 4*x])^3)), {x,0,30}], x], 2] (* G. C. Greubel, Jul 16 2019 *)
-
my(x='x+O('x^30)); Vec( (1-sqrt(1-4*x))^6/(8*x^2*(8*x^2 -(1-sqrt(1-4*x))^3))) \\ G. C. Greubel, Jul 16 2019
-
a=((1-sqrt(1-4*x))^6/(8*x^2*(8*x^2 -(1-sqrt(1-4*x))^3))).series(x, 30).coefficients(x, sparse=False); a[2:] # G. C. Greubel, Jul 16 2019
A026675
a(n) = T(2n-1,n-2), T given by A026670. Also T(2n-1,n-2) = T(2n,n+2), T given by A026725 and T(2n,n-2), T given by A026736.
Original entry on oeis.org
1, 6, 29, 131, 575, 2488, 10681, 45641, 194467, 827045, 3512983, 14909339, 63239487, 268127302, 1136495965, 4816202207, 20406887583, 86457399359, 366263778659, 1551535465465, 6572224024539, 27838835937511, 117918419518219
Offset: 2
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-Sqrt(1-4*x))^5/(4*x*(8*x^2 -(1-Sqrt(1-4*x))^3)) )); // G. C. Greubel, Jul 16 2019
-
Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^5/(4*x*(8*x^2 -(1-Sqrt[1 - 4*x])^3)), {x,0,30}], x], 2] (* G. C. Greubel, Jul 16 2019 *)
-
my(x='x+O('x^30)); Vec( (1-sqrt(1-4*x))^5/(4*x*(8*x^2 -(1-sqrt(1-4*x))^3))) \\ G. C. Greubel, Jul 16 2019
-
a=((1-sqrt(1-4*x))^5/(4*x*(8*x^2 -(1-sqrt(1-4*x))^3))).series(x, 30).coefficients(x, sparse=False); a[2:] # G. C. Greubel, Jul 16 2019
A026843
a(n) = T(2n,n+3), T given by A026725.
Original entry on oeis.org
1, 8, 46, 233, 1108, 5083, 22805, 100827, 441311, 1917751, 8289965, 35694218, 153225617, 656213596, 2805143526, 11973556060, 51047361676, 217420991444, 925300665762, 3935293406942, 16727533586006, 71069911887898, 301835332909216
Offset: 3
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-4*x))^7/(16*x^2*(8*x^2 -(1-Sqrt(1-4*x))^3)) )); // G. C. Greubel, Jul 19 2019
-
Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^7/(16*x^2*(8*x^2 -(1-Sqrt[1-4*x])^3)), {x, 0, 40}], x], 3] (* G. C. Greubel, Jul 19 2019 *)
-
my(x='x+O('x^40)); Vec( (1-sqrt(1-4*x))^7/(16*x^2*(8*x^2 -(1-sqrt(1-4*x))^3)) ) \\ G. C. Greubel, Jul 19 2019
-
a=((1-sqrt(1-4*x))^7/(16*x^2*(8*x^2 -(1-sqrt(1-4*x))^3)) ).series(x, 45).coefficients(x, sparse=False); a[3:40] # G. C. Greubel, Jul 19 2019
Showing 1-10 of 11 results.
Comments