A130410
Alternating row sums of triangle A130191 (Stirling2)^2.
Original entry on oeis.org
1, -1, -1, 0, 6, 32, 115, 172, -2030, -29013, -250051, -1587556, -5178877, 52922256, 1435509569, 20813187553, 230664704969, 1884809758791, 5120430335582, -216605840330716, -6440821191934686, -122368984222010397, -1842986108839510180, -21473141673616814694
Offset: 0
E.g.f.: 1 - x - (1/2)*x^2 + (1/4)*x^4+(4/15)*x^5 + (23/144)*x^6 + (43/1260)*x^7 - (29/576)*x^8 - (9671/120960)*x^9 ...
G.f. = 1 - x - x^2 + 6*x^4 + 32*x^5 + 115*x^6 + 172*x^7 - 2030*x^8 - 29013*x^9 + ...
-
Egf:= 1/exp(exp(exp(x)-1)-1):
S:= series(Egf,x,101):
seq(coeff(S,x,j)*j!, j=0..100); # Robert Israel, Oct 22 2015
-
Table[Sum[BellY[n, k, -BellB[Range[n]]], {k, 0, n}], {n, 0, 23}] (* Vladimir Reshetnikov, Nov 09 2016 *)
A130408
Numerators of a-sequence for Sheffer matrix A130191 (Stirling2 squared).
Original entry on oeis.org
1, 1, -1, 3, -44, 49, -9895, 3124, -54429, 2624879, -59124785, 163841201, -2508904105349, 1776678914237, -2029995134495, 175211074573961, -21557683580436716, 94127808754677868, -87882971047931164843, 161354083950193175137, -104683178840085862057001
Offset: 0
Rationals r(n): [1, 1, -1/3, 3/4, -44/15, 49/3, -9895/84, 3124/3, -54429/5, ...].
Recurrence for (Stirling2)^2: 32=S2sq(4,2) = (4/2)*(1*1*5 + 2*1*6 + 3*(-1/3)*1).
-
m:=22; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( x/Log(1+Log(1+x)) )); [Numerator(Factorial(n-1)*b[n]): n in [1..m-1]]; // G. C. Greubel, Jan 26 2020
-
seq( numer( coeff(series( x/log(1+log(1+x)), x, n+2)*factorial(n), x, n) ), n = 0..20); # G. C. Greubel, Jan 26 2020
-
With[{m = 20}, CoefficientList[Series[x/Log[1+Log[1+x]], {x,0,m}], x]*Range[0, m]!]//Numerator (* G. C. Greubel, Jan 26 2020 *)
-
[numerator( factorial(n)*( x/log(1+log(1+x)) ).series(x,n+1).list()[n]) for n in (0..20)] # G. C. Greubel, Jan 26 2020
A130409
Denominators of a-sequence for Sheffer matrix A130191 (Stirling2 squared).
Original entry on oeis.org
1, 1, 3, 4, 15, 3, 84, 3, 5, 20, 33, 6, 5460, 210, 12, 48, 255, 45, 1596, 105, 2310, 1320, 138, 36, 9100, 546, 756, 112, 435, 30, 114576, 42, 58905, 140, 105, 18, 767676, 3458, 16380, 1680, 15785, 385, 132440, 990, 434700, 38640, 3948, 360, 3248700, 99450
Offset: 0
A000587
Rao Uppuluri-Carpenter numbers (or complementary Bell numbers): e.g.f. = exp(1 - exp(x)).
Original entry on oeis.org
1, -1, 0, 1, 1, -2, -9, -9, 50, 267, 413, -2180, -17731, -50533, 110176, 1966797, 9938669, 8638718, -278475061, -2540956509, -9816860358, 27172288399, 725503033401, 5592543175252, 15823587507881, -168392610536153, -2848115497132448, -20819319685262839
Offset: 0
G.f. = 1 - x + x^3 + x^4 - 2*x^5 - 9*x^6 - 9*x^7 + 50*x^8 + 267*x^9 + 413*x^10 - ...
- N. A. Kolokolnikova, Relations between sums of certain special numbers (Russian), in Asymptotic and enumeration problems of combinatorial analysis, pp. 117-124, Krasnojarsk. Gos. Univ., Krasnoyarsk, 1976.
- Alfréd Rényi, Új modszerek es eredmenyek a kombinatorikus analfzisben. I. MTA III Oszt. Ivozl., Vol. 16 (1966), pp. 7-105.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. V. Subbarao and A. Verma, Some remarks on a product expansion. An unexplored partition function, in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics (Gainesville, FL, 1999), pp. 267-283, Kluwer, Dordrecht, 2001.
- Alois P. Heinz, Table of n, a(n) for n = 0..595 (first 101 terms from T. D. Noe)
- M. Aguiar and A. Lauve, The characteristic polynomial of the Adams operators on graded connected Hopf algebras, 2014. See Example 31. - _N. J. A. Sloane_, May 24 2014
- W. Asakly, A. Blecher, C. Brennan, A. Knopfmacher, T. Mansour, and S. Wagner, Set partition asymptotics and a conjecture of Gould and Quaintance, Journal of Mathematical Analysis and Applications, Volume 416, Issue 2 (15 August 2014), Pages 672-682.
- Tewodros Amdeberhan, Valerio de Angelis and Victor H. Moll, Complementary Bell numbers: arithmetical properties and Wilf's conjecture.
- S. Barbero, U. Cerruti, and N. Murru, A Generalization of the Binomial Interpolated Operator and its Action on Linear Recurrent Sequences, J. Int. Seq., Vol. 13 (2010), Article 10.9.7.
- R. E. Beard, On the Coefficients in the Expansion of e^(e^t) and e^(-e^t), J. Institute of Actuaries, Vol. 76 (1950), pp. 152-163. [Annotated scanned copy]
- Pascal Caron, Jean-Gabriel Luque, Ludovic Mignot, and Bruno Patrou, State complexity of catenation combined with a boolean operation: a unified approach, arXiv:1505.03474 [cs.FL], 2015.
- Valerio De Angelis and Dominic Marcello, Wilf's Conjecture, The American Mathematical Monthly, Vol. 123, No. 6 (2016), pp. 557-573.
- S. de Wannemacker, T. Laffey and R. Osburn, On a conjecture of Wilf, arXiv:math/0608085 [math.NT], 2006-2007.
- Branko Dragovich, On Summation of p-Adic Series, arXiv:1702.02569 [math.NT], 2017.
- Branko Dragovich, Andrei Yu. Khrennikov, and Natasa Z. Misic, Summation of p-Adic Functional Series in Integer Points, arXiv:1508.05079, 2015
- B. Dragovich and N. Z. Misic, p-Adic invariant summation of some p-adic functional series, P-Adic Numbers, Ultrametric Analysis, and Applications, Volume 6, Issue 4 (October 2014), pp. 275-283.
- Antal E. Fekete, Apropos Bell and Stirling Numbers, Crux Mathematicorum, Vol. 25, No. 5 (1999), pp. 274-281.
- B. Harris and L. Schoenfeld, Asymptotic expansions for the coefficients of analytic functions, Ill. J. Math., Vol. 12 (1968), pp. 264-277.
- M. Klazar, Counting even and odd partitions, Amer. Math. Monthly, Vol. 110, No. 6 (2003), pp. 527-532.
- M. Klazar, Bell numbers, their relatives and algebraic differential equations, J. Combin. Theory, A 102 (2003), 63-87.
- A. Knopfmacher and M. E. Mays, Graph compositions I: Basic enumerations, Integers, Vol. 1 (2001), Article A4. (See the first two columns of the table on p. 9.)
- Vaclav Kotesovec, Plot of |a(n)/n!|^(1/n) / |exp(1/W(-n))/W(-n)| for n = 1..40000, where W is the LambertW function.
- Peter J. Larcombe, Jack Sutton, and James Stanton, A note on the constant 1/e, Palest. J. Math. (2023) Vol. 12, No. 2, 609-619. See p. 617.
- J. W. Layman and C. L. Prather, Generalized Bell numbers and zeros of successive derivatives of an entire function, Journal of Mathematical Analysis and Applications, Volume 96, Issue 1 (15 October 1983), Pages 42-51.
- Toufik Mansour and Mark Shattuck, Counting subword patterns in permutations arising as flattened partitions of sets, Appl. Anal. Disc. Math. (2022), OnLine-First (00):9-9.
- T. Mansour, M. Shattuck and D. G. L. Wang, Recurrence relations for patterns of type (2, 1) in flattened permutations, arXiv preprint arXiv:1306.3355 [math.CO], 2013.
- S. Ramanujan, Notebook entry.
- V. R. Rao Uppuluri and J. A. Carpenter, Numbers generated by the function exp(1-e^x), Fib. Quart., Vol. 7, No. 4 (1969), pp. 437-448.
- Frank Ruskey and Jennifer Woodcock, The Rand and block distances of pairs of set partitions, Combinatorial algorithms, 287-299, Lecture Notes in Comput. Sci., 7056, Springer, Heidelberg, 2011.
- Frank Ruskey, Jennifer Woodcock and Yuji Yamauchi, Counting and computing the Rand and block distances of pairs of set partitions, Journal of Discrete Algorithms, Volume 16 (October 2012), Pages 236-248. [_N. J. A. Sloane_, Oct 03 2012]
- M. Z. Spivey, On Solutions to a General Combinatorial Recurrence, J. Int. Seq., Vol. 14 (2011), Article 11.9.7.
- D. Subedi, Complementary Bell Numbers and p-adic Series, J. Int. Seq., Vol. 17 (2014), Article 14.3.1.
- A. Vieru, Agoh's conjecture: its proof, its generalizations, its analogues, arXiv preprint arXiv:1107.2938 [math.NT], 2011.
- Eric Weisstein's World of Mathematics, Complementary Bell Number.
- D. Wuilquin, Letters to N. J. A. Sloane, August 1984.
- Yifan Yang, On a multiplicative partition function, Electron. J. Combin., Vol. 8, No. 1 (2001), Research Paper 19.
-
a000587 n = a000587_list !! n
a000587_list = 1 : f a007318_tabl [1] where
f (bs:bss) xs = y : f bss (y : xs) where y = - sum (zipWith (*) xs bs)
-- Reinhard Zumkeller, Mar 04 2014
-
b:= proc(n, t) option remember; `if`(n=0, 1-2*t,
add(b(n-j, 1-t)*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..35); # Alois P. Heinz, Jun 28 2016
-
Table[ -1 * Sum[ (-1)^( k + 1) StirlingS2[ n, k ], {k, 0, n} ], {n, 0, 40} ]
With[{nn=30},CoefficientList[Series[Exp[1-Exp[x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Nov 04 2011 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ 1 - Exp[x]], {x, 0, n}]]; (* Michael Somos, May 27 2014 *)
a[ n_] := If[ n < 0, 0, With[{m = n + 1}, SeriesCoefficient[ Series[ Nest[ x Factor[ 1 - # /. x -> x / (1 - x)] &, 0, m], {x, 0, m}], {x, 0, m}]]]; (* Michael Somos, May 27 2014 *)
Table[BellB[n, -1], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)
b[1] = 1; k = 1; Flatten[{1, Table[Do[j = k; k -= b[m]; b[m] = j;, {m, 1, n-1}]; b[n] = k; k*(-1)^n, {n, 1, 40}]}] (* Vaclav Kotesovec, Sep 09 2019 *)
-
{a(n) = if( n<0, 0, n! * polcoeff( exp( 1 - exp( x + x * O(x^n))), n))}; /* Michael Somos, Mar 14 2011 */
-
{a(n) = local(A); if( n<0, 0, n++; A = O(x); for( k=1, n, A = x - x * subst(A, x, x / (1 - x))); polcoeff( A, n))}; /* Michael Somos, Mar 14 2011 */
-
Vec(serlaplace(exp(1 - exp(x+O(x^99))))) /* Joerg Arndt, Apr 01 2011 */
-
a(n)=round(exp(1)*suminf(k=0,(-1)^k*k^n/k!))
vector(20,n,a(n-1)) \\ Derek Orr, Sep 19 2014 -- a direct approach
-
x='x+O('x^66); Vec(serlaplace(exp(1 - exp(x)))) \\ Michel Marcus, Sep 19 2014
-
# The objective of this implementation is efficiency.
# n -> [a(0), a(1), ..., a(n)] for n > 0.
def A000587_list(n):
A = [0 for i in range(n)]
A[n-1] = 1
R = [1]
for j in range(0, n):
A[n-1-j] = -A[n-1]
for k in range(n-j, n):
A[k] += A[k-1]
R.append(A[n-1])
return R
# Peter Luschny, Apr 18 2011
-
# Python 3.2 or higher required
from itertools import accumulate
A000587, blist, b = [1,-1], [1], -1
for _ in range(30):
blist = list(accumulate([b]+blist))
b = -blist[-1]
A000587.append(b) # Chai Wah Wu, Sep 19 2014
-
expnums(26, -1) # Zerinvary Lajos, May 15 2009
A000258
Expansion of e.g.f. exp(exp(exp(x)-1)-1).
Original entry on oeis.org
1, 1, 3, 12, 60, 358, 2471, 19302, 167894, 1606137, 16733779, 188378402, 2276423485, 29367807524, 402577243425, 5840190914957, 89345001017415, 1436904211547895, 24227076487779802, 427187837301557598, 7859930038606521508, 150601795280158255827
Offset: 0
G.f. = 1 + x + 3*x^2 + 12*x^3 + 60*x^4 + 358*x^5 + 2471*x^6 + 19302*x^7 + ...
- J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
- Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nuernberg, Jul 27 1994
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.4.
- Alois P. Heinz, Table of n, a(n) for n = 0..475 (first 101 terms from T. D. Noe)
- A. Aboud, J.-P. Bultel, A. Chouria, J.-G. Luque, and O. Mallet, Bell polynomials in combinatorial Hopf algebras, arXiv preprint arXiv:1402.2960 [math.CO], 2014.
- Francesca Aicardi, Diego Arcis, and Jesús Juyumaya, Brauer and Jones tied monoids, arXiv:2107.04170 [math.RT], 2021.
- P. Blasiak, A. Horzela, K. A. Penson, G. H. E. Duchamp and A. I. Solomon, Boson normal ordering via substitutions and Sheffer-type polynomials, arXiv:quant-ph/0501155, 2005.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- P. J. Cameron, D. A. Gewurz and F. Merola, Product action, Discrete Math., 308 (2008), 386-394.
- Jekuthiel Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353. [Annotated scanned copy]
- Gottfried Helms, Bell Numbers, 2008.
- T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346.
- T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346. (Annotated scanned copy)
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 70
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 292
- A. Joseph Kennedy, Class partition algebras as centralizer algebras, Communications in Algebra, 35 (2007), 145-170, see page 153.
- A. Joseph Kennedy, P. Jaish, and P. Sundaresan, Note on generating function of higher dimensional bell numbers (sic), Malaya Journal of Matematik (2020) Vol.8, No. 2, 369-372.
- Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
- T. Mansour, A. Munagi, and M. Shattuck, Recurrence Relations and Two-Dimensional Set Partitions , J. Int. Seq. 14 (2011) #11.4.1.
- K. A. Penson, P. Blasiak, G. Duchamp, A. Horzela and A. I. Solomon, Hierarchical Dobinski-type relations via substitution and the moment problem, arXiv:quant-ph/0312202, 2003, [J. Phys. A 37 (2004), 3475-3487].
- John Riordan, Letter, Apr 28 1976.
- N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, arXiv:math/0307064 [math.CO], 2003, [Order 21 (2004), 83-89].
- Index entries for sequences related to rooted trees
Row sums of (Stirling2)^2 triangle
A130191.
-
m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(Exp(Exp(x)-1)-1))); [Factorial(n-1)*b[n]: n in [1..m]]; // Vincenzo Librandi, Feb 01 2020
-
with(combinat, bell, stirling2): seq(add(stirling2(n,k)*(bell(k)), k=0..n),n=0..30);
with(combstruct); SetSetSetL := [T, {T=Set(S), S=Set(U,card >= 1), U=Set(Z,card >=1)},labeled];
# alternative Maple program:
b:= proc(n, t) option remember; `if`(n=0 or t=0, 1, add(
b(n-j, t)*b(j, t-1)*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n, 2):
seq(a(n), n=0..23); # Alois P. Heinz, Sep 02 2021
-
nn = 20; Range[0, nn]! CoefficientList[Series[Exp[Exp[Exp[x] - 1] - 1], {x, 0, nn}], x]
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ Exp[ Exp[x] - 1] - 1] , {x, 0, n}]]; (* Michael Somos, Aug 15 2015 *)
a[n_] := Sum[StirlingS2[n, k]*BellB[k], {k, 0, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 06 2016 *)
Table[Sum[BellY[n, k, BellB[Range[n]]], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
-
makelist(sum(stirling2(n,k)*belln(k),k,0,n),n,0,24); /* Emanuele Munarini, Jul 04 2011 */
A039810
Matrix square of Stirling2 triangle A008277: 2-levels set partitions of [n] into k first-level subsets.
Original entry on oeis.org
1, 2, 1, 5, 6, 1, 15, 32, 12, 1, 52, 175, 110, 20, 1, 203, 1012, 945, 280, 30, 1, 877, 6230, 8092, 3465, 595, 42, 1, 4140, 40819, 70756, 40992, 10010, 1120, 56, 1, 21147, 283944, 638423, 479976, 156072, 24570, 1932, 72, 1, 115975, 2090424, 5971350, 5660615, 2350950, 487704, 53550, 3120, 90, 1
Offset: 1
Triangle begins:
k = 1 2 3 4 5 sum
n
1 1 1
2 2 1 3
3 5 6 1 12
4 15 32 12 1 60
5 52 175 110 20 1 358
Matrix multiplication Stirling2 * Stirling2:
1 0 0 0
1 1 0 0
1 3 1 0
1 7 6 1
.
1 0 0 0 1 0 0 0
1 1 0 0 2 1 0 0
1 3 1 0 5 6 1 0
1 7 6 1 15 32 12 1
From _Peter Bala_, Jul 19 2014: (Start)
T(5,2) = 175: A 5-set can be partitioned into 2 blocks as either a union of a 3-set and a 2-set or as a union of a 4-set and a singleton set.
In the first case there are 10 ways of partitioning a 5-set into a 3-set and a 2-set. Each 3-set can be further partitioned into sub-blocks in Bell(3) = 5 ways and each 2-set can be further partitioned into sub-blocks in Bell(2) = 2 ways. So altogether we obtain 10*5*2 = 100 double partitions of this type.
In the second case, there are 5 ways of partitioning a 5-set into a 4-set and a 1-set. Each 4-set can be further partitioned in Bell(4) = 15 ways and each 1-set can be further partitioned in Bell(1) = 1 way. So altogether we obtain 5*15*1 = 75 double partitions of this type.
Hence, in total, T(5,2) = 100 + 75 = 175. (End)
- Tilman Piesk, First 100 rows, flattened
- A. Aboud, J.-P. Bultel, A. Chouria, J.-G. Luque, and O. Mallet, Bell polynomials in combinatorial Hopf algebras, arXiv preprint arXiv:1402.2960 [math.CO], 2014-2015.
- T. Mansour, A. Munagi, and M. Shattuck, Recurrence Relations and Two-Dimensional Set Partitions , J. Int. Seq. 14 (2011) # 11.4.1.
T(n, 1) =
A000110(n) (first column) (Bell numbers).
T(n, 2) =
A000558(n) 2-levels set partitions with 2 first-level classes.
T(n, n-1) =
A002378(n-1) = n*(n-1) = 2*C(n,2) = set-partitions into (n-2) singletons and one of the two possible set partitions of [2].
Sum is
A000258(n), 2-levels set partitions.
Another version with offset 0:
A130191.
Horizontal mirror triangle is
A046817.
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> combinat:-bell(n+1), 10); # Peter Luschny, Jan 28 2016
-
Flatten[Table[Sum[StirlingS2[n,i]*StirlingS2[i,k],{i,k,n}],{n,1,10},{k,1,n}]] (* Indranil Ghosh, Feb 22 2017 *)
rows = 10;
t = Table[BellB[n+1], {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
-
T(n, k) = sum(j=0, n, stirling(n, j, 2)*stirling(j, k, 2)); \\ Seiichi Manyama, Feb 13 2022
A324162
Number T(n,k) of set partitions of [n] where each subset is again partitioned into k nonempty subsets; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 5, 3, 1, 0, 15, 10, 6, 1, 0, 52, 45, 25, 10, 1, 0, 203, 241, 100, 65, 15, 1, 0, 877, 1428, 511, 350, 140, 21, 1, 0, 4140, 9325, 3626, 1736, 1050, 266, 28, 1, 0, 21147, 67035, 29765, 9030, 6951, 2646, 462, 36, 1, 0, 115975, 524926, 250200, 60355, 42651, 22827, 5880, 750, 45, 1
Offset: 0
T(4,2) = 10: 123/4, 124/3, 12/34, 134/2, 13/24, 14/23, 1/234, 1/2|3/4, 1/3|2/4, 1/4|2/3.
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 1;
0, 5, 3, 1;
0, 15, 10, 6, 1;
0, 52, 45, 25, 10, 1;
0, 203, 241, 100, 65, 15, 1;
0, 877, 1428, 511, 350, 140, 21, 1;
0, 4140, 9325, 3626, 1736, 1050, 266, 28, 1;
...
Columns k=0-10 give:
A000007,
A000110 (for n>0),
A060311,
A327504,
A327505,
A327506,
A327507,
A327508,
A327509,
A327510,
A327511.
-
T:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0, add(
T(n-j, k)*binomial(n-1, j-1)*Stirling2(j, k), j=k..n)))
end:
seq(seq(T(n, k), k=0..n), n=0..12);
-
nmax = 10;
col[k_] := col[k] = CoefficientList[Exp[(Exp[x]-1)^k/k!] + O[x]^(nmax+1), x][[k+1;;]] Range[k, nmax]!;
T[n_, k_] := Which[k == n, 1, k == 0, 0, True, col[k][[n-k+1]]];
Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 26 2020 *)
-
T(n, k) = if(k==0, 0^n, sum(j=0, n\k, (k*j)!*stirling(n, k*j, 2)/(k!^j*j!))); \\ Seiichi Manyama, May 07 2022
A000558
Generalized Stirling numbers of second kind.
Original entry on oeis.org
1, 6, 32, 175, 1012, 6230, 40819, 283944, 2090424, 16235417, 132609666, 1135846062, 10175352709, 95108406130, 925496853980, 9357279554071, 98118527430960, 1065259283215810, 11956366813630835, 138539436100687988, 1655071323662574756, 20361556640795422729
Offset: 2
From _Olivier Gérard_, Mar 25 2009: (Start)
a(2) = 1, since there is only one partition of {1,2} into two classes, and only one way to partition those classes.
a(4) = 32 = 7*1 + 6*3 + 1*7 since there are 7 ways of partitioning {1,2,3,4} into two classes (which cannot be grouped further), 6 ways of partitioning a set of 4 elements into three classes and three ways to partition three classes into two super-classes, etc. (End)
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
nn = 22; t = Range[0, nn]! CoefficientList[Series[1/2*(Exp[Exp[x] - 1] - 1)^2, {x, 0, nn}], x]; Drop[t, 2] (* T. D. Noe, Aug 10 2012 *)
a[n_] := Sum[StirlingS2[n, k] (2^(k-1)-1), {k, 0, n}];
a /@ Range[2, 100] (* Jean-François Alcover, Mar 30 2021 *)
A000559
Generalized Stirling numbers of second kind.
Original entry on oeis.org
1, 12, 110, 945, 8092, 70756, 638423, 5971350, 57996774, 585092607, 6128147610, 66579524648, 749542556193, 8733648533696, 105203108066962, 1308549777461505, 16787682400875456, 221901108871482760, 3018891886411332135, 42230736603244134242
Offset: 3
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
nn = 23; t = Range[0, nn]! CoefficientList[Series[1/6*(Exp[Exp[x] - 1] - 1)^3, {x, 0, nn}], x]; Drop[t, 3] (* T. D. Noe, Aug 10 2012 *)
A321712
Number of partitions of a 2n-set into colored blocks, such that exactly n colors are used and the colors are introduced in increasing order.
Original entry on oeis.org
1, 2, 32, 945, 40992, 2350950, 167829629, 14342726398, 1427875921472, 162295947266310, 20738354463124740, 2942918038945276392, 459208250931426639151, 78145305037982571857910, 14403186440935002502579620, 2858375634375573872689073400, 607685050482829924986457079520
Offset: 0
-
b:= proc(n, m, k) option remember; `if`(n=0, 1, add(
b(n-1, max(j, m), k)*`if`(j>m, k, 1) , j=1..m+1))
end:
a:= n-> add(b(2*n, 0, n-i)*(-1)^i*binomial(n, i), i=0..n)/n!:
seq(a(n), n=0..15);
-
b[n_, m_, k_] := b[n, m, k] = If[n == 0, 1, Sum[b[n - 1, Max[j, m], k] If[j > m, k, 1] , {j, 1, m + 1}]];
a[n_] := Sum[b[2n, 0, n - i] (-1)^i Binomial[n, i], {i, 0, n}]/n!;
a /@ Range[0, 15] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)
Table[Sum[StirlingS2[2*n, k] * StirlingS2[k, n], {k, n, 2*n}], {n, 0, 20}] (* Vaclav Kotesovec, Feb 17 2021 *)
Showing 1-10 of 12 results.
Comments