cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A130410 Alternating row sums of triangle A130191 (Stirling2)^2.

Original entry on oeis.org

1, -1, -1, 0, 6, 32, 115, 172, -2030, -29013, -250051, -1587556, -5178877, 52922256, 1435509569, 20813187553, 230664704969, 1884809758791, 5120430335582, -216605840330716, -6440821191934686, -122368984222010397, -1842986108839510180, -21473141673616814694
Offset: 0

Views

Author

Wolfdieter Lang Jun 01 2007

Keywords

Comments

Stirling2 transform of A000587. 2nd Stirling2 transform of A033999. - Vladimir Reshetnikov, Oct 22 2015

Examples

			E.g.f.: 1 - x - (1/2)*x^2 + (1/4)*x^4+(4/15)*x^5 + (23/144)*x^6 + (43/1260)*x^7 - (29/576)*x^8 - (9671/120960)*x^9 ...
G.f. = 1 - x - x^2 + 6*x^4 + 32*x^5 + 115*x^6 + 172*x^7 - 2030*x^8 - 29013*x^9 + ...
		

Crossrefs

Cf. A048993, A000258 (row sums of A130191), A000587, A033999, A130191.

Programs

  • Maple
    Egf:= 1/exp(exp(exp(x)-1)-1):
    S:= series(Egf,x,101):
    seq(coeff(S,x,j)*j!, j=0..100); # Robert Israel, Oct 22 2015
  • Mathematica
    Table[Sum[BellY[n, k, -BellB[Range[n]]], {k, 0, n}], {n, 0, 23}] (* Vladimir Reshetnikov, Nov 09 2016 *)

Formula

a(n) = sum(A130191(n,m)*(-1)^m,m=0..n), n>=0.
E.g.f.: 1/exp(f(x)) with f(x):=exp(exp(x)-1)-1.
a(n) = sum(k=0..n, A000587(k)*stirling2(n,k)) = sum(k=0..n, B_k(-1)*stirling2(n,k)), where B_k(x) is k-th Bell polynomial.

A130408 Numerators of a-sequence for Sheffer matrix A130191 (Stirling2 squared).

Original entry on oeis.org

1, 1, -1, 3, -44, 49, -9895, 3124, -54429, 2624879, -59124785, 163841201, -2508904105349, 1776678914237, -2029995134495, 175211074573961, -21557683580436716, 94127808754677868, -87882971047931164843, 161354083950193175137, -104683178840085862057001
Offset: 0

Views

Author

Wolfdieter Lang, Jun 01 2007

Keywords

Comments

The denominators are found in A130409.
From the definition of the a-sequence {r(n)} one has the recurrence for (Stirling2)^2 = S2sq: S2sq(n,m) = (n/m)*Sum_{j=0..n-m} binomial(m-1+j,j)*r(j)*S2sq(n-1,m-1+j), n >= m >= 1.
For the notion of the a-sequence for a Sheffer matrix see the W. Lang link under A006232. Here the a-sequence is called r(n) because it is a sequence of rationals.

Examples

			Rationals r(n): [1, 1, -1/3, 3/4, -44/15, 49/3, -9895/84, 3124/3, -54429/5, ...].
Recurrence for (Stirling2)^2: 32=S2sq(4,2) = (4/2)*(1*1*5 + 2*1*6 + 3*(-1/3)*1).
		

Crossrefs

Cf. A006232(n)/A006233(n) (a-sequence for Stirling2 A048993).

Programs

  • Magma
    m:=22; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( x/Log(1+Log(1+x)) )); [Numerator(Factorial(n-1)*b[n]): n in [1..m-1]]; // G. C. Greubel, Jan 26 2020
    
  • Maple
    seq( numer( coeff(series( x/log(1+log(1+x)), x, n+2)*factorial(n), x, n) ), n = 0..20); # G. C. Greubel, Jan 26 2020
  • Mathematica
    With[{m = 20}, CoefficientList[Series[x/Log[1+Log[1+x]], {x,0,m}], x]*Range[0, m]!]//Numerator (* G. C. Greubel, Jan 26 2020 *)
  • Sage
    [numerator( factorial(n)*( x/log(1+log(1+x)) ).series(x,n+1).list()[n]) for n in (0..20)] # G. C. Greubel, Jan 26 2020

Formula

a(n) = numerator(r(n)), n >= 0, with the rational r(n) sequence with e.g.f. x/log(1+log(1+x)). {r(n)} is the a-sequence for the Sheffer matrix (Stirling2)^2 (A130191).

A130409 Denominators of a-sequence for Sheffer matrix A130191 (Stirling2 squared).

Original entry on oeis.org

1, 1, 3, 4, 15, 3, 84, 3, 5, 20, 33, 6, 5460, 210, 12, 48, 255, 45, 1596, 105, 2310, 1320, 138, 36, 9100, 546, 756, 112, 435, 30, 114576, 42, 58905, 140, 105, 18, 767676, 3458, 16380, 1680, 15785, 385, 132440, 990, 434700, 38640, 3948, 360, 3248700, 99450
Offset: 0

Views

Author

Wolfdieter Lang Jun 01 2007

Keywords

Comments

The numerators are found in A130408.
See the W. Lang link in A130408.

Formula

a(n)=denominator(r(n)),n>=0, with the rational r(n) sequence with e.g.f. x/log(1+log(1+x)).

A000587 Rao Uppuluri-Carpenter numbers (or complementary Bell numbers): e.g.f. = exp(1 - exp(x)).

Original entry on oeis.org

1, -1, 0, 1, 1, -2, -9, -9, 50, 267, 413, -2180, -17731, -50533, 110176, 1966797, 9938669, 8638718, -278475061, -2540956509, -9816860358, 27172288399, 725503033401, 5592543175252, 15823587507881, -168392610536153, -2848115497132448, -20819319685262839
Offset: 0

Views

Author

Keywords

Comments

Alternating row sums of Stirling2 triangle A048993.
Related to the matrix-exponential of the Pascal-matrix, see A000110 and A011971. - Gottfried Helms, Apr 08 2007
Closely linked to A000110 and especially the contribution there of Jonathan R. Love (japanada11(AT)yahoo.ca), Feb 22 2007, by offering what is a complementary finding.
Number of set partitions of 1..n with an even number of parts, minus the number of such partitions with an odd number of parts. - Franklin T. Adams-Watters, May 04 2010
After -2, the smallest prime is a(36) = -1454252568471818731501051, no others through a(100). What is the first prime >0 in the sequence? - Jonathan Vos Post, Feb 02 2011
a(723) ~ 1.9*10^1265 is almost certainly prime. - D. S. McNeil, Feb 02 2011
Stirling transform of a(n) = [1, -1, 0, 1, 1, ...] is A033999(n) = [1, -1, 1, -1, 1, ...]. - Michael Somos, Mar 28 2012
Negated coefficients in the asymptotic expansion: A005165(n)/n! ~ 1 - 1/n + 1/n^2 + 0/n^3 - 1/n^4 - 1/n^5 + 2/n^6 + 9/n^7 + 9/n^8 - 50/n^9 - 267/n^10 - 413/n^11 + O(1/n^12), starting from the O(1/n) term. - Vladimir Reshetnikov, Nov 09 2016
Named after Venkata Ramamohana Rao Uppuluri and John A. Carpenter of the Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee. They are called "Rényi numbers" by Fekete (1999), after the Hungarian mathematician Alfréd Rényi (1921-1970). - Amiram Eldar, Mar 11 2022

Examples

			G.f. = 1 - x + x^3 + x^4 - 2*x^5 - 9*x^6 - 9*x^7 + 50*x^8 + 267*x^9 + 413*x^10 - ...
		

References

  • N. A. Kolokolnikova, Relations between sums of certain special numbers (Russian), in Asymptotic and enumeration problems of combinatorial analysis, pp. 117-124, Krasnojarsk. Gos. Univ., Krasnoyarsk, 1976.
  • Alfréd Rényi, Új modszerek es eredmenyek a kombinatorikus analfzisben. I. MTA III Oszt. Ivozl., Vol. 16 (1966), pp. 7-105.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. V. Subbarao and A. Verma, Some remarks on a product expansion. An unexplored partition function, in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics (Gainesville, FL, 1999), pp. 267-283, Kluwer, Dordrecht, 2001.

Crossrefs

Cf. A000110, A011971 (base triangle PE), A078937 (PE^2).

Programs

  • Haskell
    a000587 n = a000587_list !! n
    a000587_list = 1 : f a007318_tabl [1] where
       f (bs:bss) xs = y : f bss (y : xs) where y = - sum (zipWith (*) xs bs)
    -- Reinhard Zumkeller, Mar 04 2014
  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1-2*t,
          add(b(n-j, 1-t)*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..35);  # Alois P. Heinz, Jun 28 2016
  • Mathematica
    Table[ -1 * Sum[ (-1)^( k + 1) StirlingS2[ n, k ], {k, 0, n} ], {n, 0, 40} ]
    With[{nn=30},CoefficientList[Series[Exp[1-Exp[x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Nov 04 2011 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ 1 - Exp[x]], {x, 0, n}]]; (* Michael Somos, May 27 2014 *)
    a[ n_] := If[ n < 0, 0, With[{m = n + 1}, SeriesCoefficient[ Series[ Nest[ x Factor[ 1 - # /. x -> x / (1 - x)] &, 0, m], {x, 0, m}], {x, 0, m}]]]; (* Michael Somos, May 27 2014 *)
    Table[BellB[n, -1], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)
    b[1] = 1; k = 1; Flatten[{1, Table[Do[j = k; k -= b[m]; b[m] = j;, {m, 1, n-1}]; b[n] = k; k*(-1)^n, {n, 1, 40}]}] (* Vaclav Kotesovec, Sep 09 2019 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( 1 - exp( x + x * O(x^n))), n))}; /* Michael Somos, Mar 14 2011 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, n++; A = O(x); for( k=1, n, A = x - x * subst(A, x, x / (1 - x))); polcoeff( A, n))}; /* Michael Somos, Mar 14 2011 */
    
  • PARI
    Vec(serlaplace(exp(1 - exp(x+O(x^99))))) /* Joerg Arndt, Apr 01 2011 */
    
  • PARI
    a(n)=round(exp(1)*suminf(k=0,(-1)^k*k^n/k!))
    vector(20,n,a(n-1)) \\ Derek Orr, Sep 19 2014 -- a direct approach
    
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(1 - exp(x)))) \\ Michel Marcus, Sep 19 2014
    
  • Python
    # The objective of this implementation is efficiency.
    # n -> [a(0), a(1), ..., a(n)] for n > 0.
    def A000587_list(n):
        A = [0 for i in range(n)]
        A[n-1] = 1
        R = [1]
        for j in range(0, n):
            A[n-1-j] = -A[n-1]
            for k in range(n-j, n):
                A[k] += A[k-1]
            R.append(A[n-1])
        return R
    # Peter Luschny, Apr 18 2011
    
  • Python
    # Python 3.2 or higher required
    from itertools import accumulate
    A000587, blist, b = [1,-1], [1], -1
    for _ in range(30):
        blist = list(accumulate([b]+blist))
        b = -blist[-1]
        A000587.append(b) # Chai Wah Wu, Sep 19 2014
    
  • Sage
    expnums(26, -1) # Zerinvary Lajos, May 15 2009
    

Formula

a(n) = e*Sum_{k>=0} (-1)^k*k^n/k!. - Benoit Cloitre, Jan 28 2003
E.g.f.: exp(1 - e^x).
a(n) = Sum_{k=0..n} (-1)^k S2(n, k), where S2(i, j) are the Stirling numbers of second kind A008277.
G.f.: (x/(1-x))*A(x/(1-x)) = 1 - A(x); the binomial transform equals the negative of the sequence shifted one place left. - Paul D. Hanna, Dec 08 2003
With different signs: g.f.: Sum_{k>=0} x^k/Product_{L=1..k} (1 + L*x).
Recurrence: a(n) = -Sum_{i=0..n-1} a(i)*C(n-1, i). - Ralf Stephan, Feb 24 2005
Let P be the lower-triangular Pascal-matrix, PE = exp(P-I) a matrix-exponential in exact integer arithmetic (or PE = lim exp(P)/exp(1) as limit of the exponential); then a(n) = PE^-1 [n,1]. - Gottfried Helms, Apr 08 2007
Take the series 0^n/0! - 1^n/1! + 2^n/2! - 3^n/3! + 4^n/4! + ... If n=0 then the result will be 1/e, where e = 2.718281828... If n=1, the result will be -1/e. If n=2, the result will be 0 (i.e., 0/e). As we continue for higher natural number values of n sequence for the Roa Uppuluri-Carpenter numbers is generated in the numerator, i.e., 1/e, -1/e, 0/e, 1/e, 1/e, -2/e, -9/e, -9/e, 50/e, 267/e, ... . - Peter Collins (pcolins(AT)eircom.net), Jun 04 2007
The sequence (-1)^n*a(n), with general term Sum_{k=0..n} (-1)^(n-k)*S2(n, k), has e.g.f. exp(1-exp(-x)). It also has Hankel transform (-1)^C(n+1,2)*A000178(n) and binomial transform A109747. - Paul Barry, Mar 31 2008
G.f.: 1 / (1 + x / (1 - x / (1 + x / (1 - 2*x / (1 + x / (1 - 3*x / (1 + x / ...))))))). - Michael Somos, May 12 2012
From Sergei N. Gladkovskii, Sep 28 2012 to Feb 07 2014: (Start)
Continued fractions:
G.f.: -1/U(0) where U(k) = x*k - 1 - x + x^2*(k+1)/U(k+1).
G.f.: 1/(U(0)+x) where U(k) = 1 + x - x*(k+1)/(1 + x/U(k+1)).
G.f.: 1+x/G(0) where G(k) = x*k - 1 + x^2*(k+1)/G(k+1).
G.f.: (1 - G(0))/(x+1) where G(k) = 1 - 1/(1-k*x)/(1-x/(x+1/G(k+1) )).
G.f.: 1 + x/(G(0)-x) where G(k) = x*k + 2*x - 1 - x*(x*k+x-1)/G(k+1).
G.f.: G(0)/(1+x), where G(k) = 1-x^2*(k+1)/(x^2*(k+1)+(x*k-1-x)*(x*k-1)/G(k+1)).
(End)
a(n) = B_n(-1), where B_n(x) is n-th Bell polynomial. - Vladimir Reshetnikov, Oct 20 2015
From Mélika Tebni, May 20 2022: (Start)
a(n) = Sum_{k=0..n} (-1)^k*Bell(k)*A129062(n, k).
a(n) = Sum_{k=0..n} (-1)^k*k!*A130191(n, k). (End)

A000258 Expansion of e.g.f. exp(exp(exp(x)-1)-1).

Original entry on oeis.org

1, 1, 3, 12, 60, 358, 2471, 19302, 167894, 1606137, 16733779, 188378402, 2276423485, 29367807524, 402577243425, 5840190914957, 89345001017415, 1436904211547895, 24227076487779802, 427187837301557598, 7859930038606521508, 150601795280158255827
Offset: 0

Views

Author

Keywords

Comments

Number of 3-level labeled rooted trees with n leaves. - Christian G. Bower, Aug 15 1998
Number of pairs of set partitions (d,d') of [n] such that d is finer than d'. - A. Joseph Kennedy (kennedy_2001in(AT)yahoo.co.in), Feb 05 2006
In the Comm. Algebra paper cited, I introduce a sequence of algebras called 'class partition algebras' with this sequence as dimensions. The algebras are the centralizers of wreath product in combinatorial representation theory. - A. Joseph Kennedy (kennedy_2001in(AT)yahoo.co.in), Feb 17 2008
a(n) is the number of ways to partition {1,2,...,n} and then partition each cell (block) into subcells.

Examples

			G.f. = 1 + x + 3*x^2 + 12*x^3 + 60*x^4 + 358*x^5 + 2471*x^6 + 19302*x^7 + ...
		

References

  • J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
  • Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nuernberg, Jul 27 1994
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.4.

Crossrefs

Row sums of (Stirling2)^2 triangle A130191.
Column k=2 of A144150.

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(Exp(Exp(x)-1)-1))); [Factorial(n-1)*b[n]: n in [1..m]]; // Vincenzo Librandi, Feb 01 2020
  • Maple
    with(combinat, bell, stirling2): seq(add(stirling2(n,k)*(bell(k)), k=0..n),n=0..30);
    with(combstruct); SetSetSetL := [T, {T=Set(S), S=Set(U,card >= 1), U=Set(Z,card >=1)},labeled];
    # alternative Maple program:
    b:= proc(n, t) option remember; `if`(n=0 or t=0, 1, add(
           b(n-j, t)*b(j, t-1)*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> b(n, 2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 02 2021
  • Mathematica
    nn = 20; Range[0, nn]! CoefficientList[Series[Exp[Exp[Exp[x] - 1] - 1], {x, 0, nn}], x]
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ Exp[ Exp[x] - 1] - 1] , {x, 0, n}]]; (* Michael Somos, Aug 15 2015 *)
    a[n_] := Sum[StirlingS2[n, k]*BellB[k], {k, 0, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 06 2016 *)
    Table[Sum[BellY[n, k, BellB[Range[n]]], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
  • Maxima
    makelist(sum(stirling2(n,k)*belln(k),k,0,n),n,0,24); /* Emanuele Munarini, Jul 04 2011 */
    

Formula

a(n) = |A039811(n, 1)| (first column of triangle).
a(n) = Sum_{k=0..n} Stirling2(n, k)*Bell(k). - Detlef Pauly (dettodet(AT)yahoo.de), Jun 06 2002
Representation as an infinite series (Dobinski-type formula), in Maple notation: a(n)=exp(exp(-1)-1)*sum(evalf(sum(p!*stirling2(k, p)*exp(-p), p=1..k))*k^n/k!, k=0..infinity), n=1, 2, ... . - Karol A. Penson, Nov 28 2003
a(n) = Sum_{k=0..n} A055896(n,k). - R. J. Mathar, Apr 15 2008
G.f.: Sum_{j>=0} Bell(j)*x^j / Product_{k=1..j} (1 - k*x). - Ilya Gutkovskiy, Apr 06 2019

A039810 Matrix square of Stirling2 triangle A008277: 2-levels set partitions of [n] into k first-level subsets.

Original entry on oeis.org

1, 2, 1, 5, 6, 1, 15, 32, 12, 1, 52, 175, 110, 20, 1, 203, 1012, 945, 280, 30, 1, 877, 6230, 8092, 3465, 595, 42, 1, 4140, 40819, 70756, 40992, 10010, 1120, 56, 1, 21147, 283944, 638423, 479976, 156072, 24570, 1932, 72, 1, 115975, 2090424, 5971350, 5660615, 2350950, 487704, 53550, 3120, 90, 1
Offset: 1

Views

Author

Christian G. Bower, Feb 15 1999

Keywords

Comments

This triangle groups certain generalized Stirling numbers of the second kind A000558, A000559, ... They can also be interpreted in terms of trees of height 3 with n leaves and constraints on the order of the root.
From Peter Bala, Jul 19 2014: (Start)
The (n,k)-th entry in this table gives the number of double partitions of the set [n] = {1,2,...,n} into k blocks. To form a double partition of [n] we first write [n] as a disjoint union X_1 U...U X_k of k nonempty subsets (blocks) X_i of [n]. Then each block X_i is further partitioned into sub-blocks to give a double partition. For instance, {1,2,4} U {3,5} is a partition of [5] into 2 blocks and {{1,4},{2}} U {{3},{5}} is a refinement of this partition to a double partition of [5] into 2 blocks (and 4 sub-blocks).
Compare the above interpretation for the (n,k)-th entry of this table with the interpretation of the (n,k)-th entry of A013609 (the square of Pascal's triangle but with the rows read in reverse order) as counting the pairs (X,Y) of subsets of [n] such that |Y| = k and X is contained in Y. (End)
Also the Bell transform of the shifted Bell numbers B(n+1) without column 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016
T(n,k) is the number of partitions of an n-set into colored blocks, such that exactly k colors are used and the colors are introduced in increasing order. T(3,2) = 6: 1a|23b, 13a|2b, 12a|3b, 1a|2a|3b, 1a|2b|3a, 1a|2b|3b. - Alois P. Heinz, Aug 27 2019

Examples

			Triangle begins:
      k = 1    2    3    4    5          sum
  n
  1       1                                1
  2       2    1                           3
  3       5    6    1                     12
  4      15   32   12    1                60
  5      52  175  110   20    1          358
Matrix multiplication Stirling2 * Stirling2:
                  1  0  0  0
                  1  1  0  0
                  1  3  1  0
                  1  7  6  1
.
  1  0  0  0      1  0  0  0
  1  1  0  0      2  1  0  0
  1  3  1  0      5  6  1  0
  1  7  6  1     15 32 12  1
From _Peter Bala_, Jul 19 2014: (Start)
T(5,2) = 175: A 5-set can be partitioned into 2 blocks as either a union of a 3-set and a 2-set or as a union of a 4-set and a singleton set.
In the first case there are 10 ways of partitioning a 5-set into a 3-set and a 2-set. Each 3-set can be further partitioned into sub-blocks in Bell(3) = 5 ways and each 2-set can be further partitioned into sub-blocks in Bell(2) = 2 ways. So altogether we obtain 10*5*2 = 100 double partitions of this type.
In the second case, there are 5 ways of partitioning a 5-set into a 4-set and a 1-set. Each 4-set can be further partitioned in Bell(4) = 15 ways and each 1-set can be further partitioned in Bell(1) = 1 way. So altogether we obtain 5*15*1 = 75 double partitions of this type.
Hence, in total, T(5,2) = 100 + 75 = 175. (End)
		

Crossrefs

Cf. A039811, A039814, A039813 (other products of Stirling matrices).
T(n, 1) = A000110(n) (first column) (Bell numbers).
T(n, 2) = A000558(n) 2-levels set partitions with 2 first-level classes.
T(n, n-1) = A002378(n-1) = n*(n-1) = 2*C(n,2) = set-partitions into (n-2) singletons and one of the two possible set partitions of [2].
Sum is A000258(n), 2-levels set partitions.
Another version with offset 0: A130191.
Horizontal mirror triangle is A046817.
T(2n,n) gives A321712.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> combinat:-bell(n+1), 10); # Peter Luschny, Jan 28 2016
  • Mathematica
    Flatten[Table[Sum[StirlingS2[n,i]*StirlingS2[i,k],{i,k,n}],{n,1,10},{k,1,n}]] (* Indranil Ghosh, Feb 22 2017 *)
    rows = 10;
    t = Table[BellB[n+1], {n, 0, rows}];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
  • PARI
    T(n, k) = sum(j=0, n, stirling(n, j, 2)*stirling(j, k, 2)); \\ Seiichi Manyama, Feb 13 2022

Formula

S2 = A008277 (Stirling numbers of the second kind).
T = (S2)^2.
T(n,k) = Sum_{i=k..n} S2(n,i) * S2(i,k).
E.g.f. of k-th column: (exp(exp(x)-1)-1)^k/k!. [corrected by Seiichi Manyama, Feb 12 2022]
From Peter Bala, Jul 19 2014: (Start)
T(n,k) = Sum_{disjoint unions X_1 U...U X_k = [n]} Bell(|X_1|)*...*Bell(|X_k|), where Bell(n) = A000110(n).
Recurrence equation: T(n+1,k+1) = Sum_{j = k..n} Bell(n+1-j)*binomial(n,j)* T(j,k).
Row sums [1,3,12,60,358,...] = A000258. (End)

Extensions

Definition and interpretation edited by Olivier Gérard, Jul 31 2011

A324162 Number T(n,k) of set partitions of [n] where each subset is again partitioned into k nonempty subsets; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 5, 3, 1, 0, 15, 10, 6, 1, 0, 52, 45, 25, 10, 1, 0, 203, 241, 100, 65, 15, 1, 0, 877, 1428, 511, 350, 140, 21, 1, 0, 4140, 9325, 3626, 1736, 1050, 266, 28, 1, 0, 21147, 67035, 29765, 9030, 6951, 2646, 462, 36, 1, 0, 115975, 524926, 250200, 60355, 42651, 22827, 5880, 750, 45, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 02 2019

Keywords

Examples

			T(4,2) = 10: 123/4, 124/3, 12/34, 134/2, 13/24, 14/23, 1/234, 1/2|3/4, 1/3|2/4, 1/4|2/3.
Triangle T(n,k) begins:
  1;
  0,    1;
  0,    2,    1;
  0,    5,    3,    1;
  0,   15,   10,    6,    1;
  0,   52,   45,   25,   10,    1;
  0,  203,  241,  100,   65,   15,   1;
  0,  877, 1428,  511,  350,  140,  21,  1;
  0, 4140, 9325, 3626, 1736, 1050, 266, 28, 1;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A000110 (for n>0), A060311, A327504, A327505, A327506, A327507, A327508, A327509, A327510, A327511.
Row sums give A324238.
T(2n,n) gives A324241.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0, add(
          T(n-j, k)*binomial(n-1, j-1)*Stirling2(j, k), j=k..n)))
        end:
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    nmax = 10;
    col[k_] := col[k] = CoefficientList[Exp[(Exp[x]-1)^k/k!] + O[x]^(nmax+1), x][[k+1;;]] Range[k, nmax]!;
    T[n_, k_] := Which[k == n, 1, k == 0, 0, True, col[k][[n-k+1]]];
    Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 26 2020 *)
  • PARI
    T(n, k) = if(k==0, 0^n, sum(j=0, n\k, (k*j)!*stirling(n, k*j, 2)/(k!^j*j!))); \\ Seiichi Manyama, May 07 2022

Formula

E.g.f. of column k>0: exp((exp(x)-1)^k/k!).
Sum_{k=1..n} k * T(n,k) = A325929(n).
T(n,k) = Sum_{j=0..floor(n/k)} (k*j)! * Stirling2(n,k*j)/(k!^j * j!) for k > 0. - Seiichi Manyama, May 07 2022

A000558 Generalized Stirling numbers of second kind.

Original entry on oeis.org

1, 6, 32, 175, 1012, 6230, 40819, 283944, 2090424, 16235417, 132609666, 1135846062, 10175352709, 95108406130, 925496853980, 9357279554071, 98118527430960, 1065259283215810, 11956366813630835, 138539436100687988, 1655071323662574756, 20361556640795422729
Offset: 2

Views

Author

Keywords

Comments

From Olivier Gérard, Mar 25 2009: (Start)
a(n) is the number of hierarchical partitions of a set of n elements into two second level classes : k>1 subsets of [n] are further grouped in two classes.
a(n) is equivalently the number of trees of uniform height 3 with n labeled leaves, and a root of order two. (End)

Examples

			From _Olivier Gérard_, Mar 25 2009: (Start)
a(2) = 1, since there is only one partition of {1,2} into two classes, and only one way to partition those classes.
a(4) = 32 = 7*1 + 6*3 + 1*7 since there are 7 ways of partitioning {1,2,3,4} into two classes (which cannot be grouped further), 6 ways of partitioning a set of 4 elements into three classes and three ways to partition three classes into two super-classes, etc. (End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A130191.
Cf. A001861 for the related bicolor set partitions. - Olivier Gérard, Mar 25 2009

Programs

  • Mathematica
    nn = 22; t = Range[0, nn]! CoefficientList[Series[1/2*(Exp[Exp[x] - 1] - 1)^2, {x, 0, nn}], x]; Drop[t, 2] (* T. D. Noe, Aug 10 2012 *)
    a[n_] := Sum[StirlingS2[n, k] (2^(k-1)-1), {k, 0, n}];
    a /@ Range[2, 100] (* Jean-François Alcover, Mar 30 2021 *)

Formula

E.g.f.: (1/2) * (exp(exp(x) - 1) - 1)^2. - Vladeta Jovovic, Sep 28 2003
a(n) = Sum_{k=0..n} Stirling2(n,k) * Stirling2(k,2). - Olivier Gérard, Mar 25 2009
a(n) = Sum_{k=1..n-1} binomial(n-1,k) * Bell(k) * Bell(n-k). - Ilya Gutkovskiy, Feb 15 2021

Extensions

More terms from David W. Wilson, Jan 13 2000

A000559 Generalized Stirling numbers of second kind.

Original entry on oeis.org

1, 12, 110, 945, 8092, 70756, 638423, 5971350, 57996774, 585092607, 6128147610, 66579524648, 749542556193, 8733648533696, 105203108066962, 1308549777461505, 16787682400875456, 221901108871482760, 3018891886411332135, 42230736603244134242
Offset: 3

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A130191.

Programs

  • Mathematica
    nn = 23; t = Range[0, nn]! CoefficientList[Series[1/6*(Exp[Exp[x] - 1] - 1)^3, {x, 0, nn}], x]; Drop[t, 3] (* T. D. Noe, Aug 10 2012 *)

Formula

E.g.f.: (1/3!) * (exp(exp(x) - 1) - 1)^3. - Vladeta Jovovic, Sep 28 2003
a(n) = Sum_{k=0..n} Stirling2(n,k) * Stirling2(k,3).

Extensions

More terms from David W. Wilson, Jan 13 2000

A321712 Number of partitions of a 2n-set into colored blocks, such that exactly n colors are used and the colors are introduced in increasing order.

Original entry on oeis.org

1, 2, 32, 945, 40992, 2350950, 167829629, 14342726398, 1427875921472, 162295947266310, 20738354463124740, 2942918038945276392, 459208250931426639151, 78145305037982571857910, 14403186440935002502579620, 2858375634375573872689073400, 607685050482829924986457079520
Offset: 0

Views

Author

Alois P. Heinz, Aug 27 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, m, k) option remember; `if`(n=0, 1, add(
          b(n-1, max(j, m), k)*`if`(j>m, k, 1) , j=1..m+1))
        end:
    a:= n-> add(b(2*n, 0, n-i)*(-1)^i*binomial(n, i), i=0..n)/n!:
    seq(a(n), n=0..15);
  • Mathematica
    b[n_, m_, k_] := b[n, m, k] = If[n == 0, 1, Sum[b[n - 1, Max[j, m], k] If[j > m, k, 1] , {j, 1, m + 1}]];
    a[n_] := Sum[b[2n, 0, n - i] (-1)^i Binomial[n, i], {i, 0, n}]/n!;
    a /@ Range[0, 15] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)
    Table[Sum[StirlingS2[2*n, k] * StirlingS2[k, n], {k, n, 2*n}], {n, 0, 20}] (* Vaclav Kotesovec, Feb 17 2021 *)

Formula

a(n) = Sum_{i=n..2*n} Stirling2(2*n,i)*Stirling2(i,n).
a(n) = A039810(2n,n) = A130191(2n,n).
a(n) = ((2*n)!/n!) * [x^(2*n)] (exp(exp(x) - 1) - 1)^n. - Ilya Gutkovskiy, Feb 15 2021
From Vaclav Kotesovec, Feb 17 2021: (Start)
a(n) ~ c * d^n * (n-1)!, where
d = -4/(p^2*q*(1 + q + r)) = 14.158467948361614323478778011058425244554144983745335637776404207122781371002...
p = LambertW(-2/((1+r)*exp(2/(1+r))))
q = LambertW(-(1+r)/exp(1+r))
r = 0.49039351286814033601311908705923238442641817550970055325385921966197159992...
is the root of the equation p*(1+r)*(1+q+r) + (2 + p + p*r) = 0
and c = 0.1809999195056310772963776575864895285358912769365095026676184958683437... (End)
Showing 1-10 of 12 results. Next