cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A039810 Matrix square of Stirling2 triangle A008277: 2-levels set partitions of [n] into k first-level subsets.

Original entry on oeis.org

1, 2, 1, 5, 6, 1, 15, 32, 12, 1, 52, 175, 110, 20, 1, 203, 1012, 945, 280, 30, 1, 877, 6230, 8092, 3465, 595, 42, 1, 4140, 40819, 70756, 40992, 10010, 1120, 56, 1, 21147, 283944, 638423, 479976, 156072, 24570, 1932, 72, 1, 115975, 2090424, 5971350, 5660615, 2350950, 487704, 53550, 3120, 90, 1
Offset: 1

Views

Author

Christian G. Bower, Feb 15 1999

Keywords

Comments

This triangle groups certain generalized Stirling numbers of the second kind A000558, A000559, ... They can also be interpreted in terms of trees of height 3 with n leaves and constraints on the order of the root.
From Peter Bala, Jul 19 2014: (Start)
The (n,k)-th entry in this table gives the number of double partitions of the set [n] = {1,2,...,n} into k blocks. To form a double partition of [n] we first write [n] as a disjoint union X_1 U...U X_k of k nonempty subsets (blocks) X_i of [n]. Then each block X_i is further partitioned into sub-blocks to give a double partition. For instance, {1,2,4} U {3,5} is a partition of [5] into 2 blocks and {{1,4},{2}} U {{3},{5}} is a refinement of this partition to a double partition of [5] into 2 blocks (and 4 sub-blocks).
Compare the above interpretation for the (n,k)-th entry of this table with the interpretation of the (n,k)-th entry of A013609 (the square of Pascal's triangle but with the rows read in reverse order) as counting the pairs (X,Y) of subsets of [n] such that |Y| = k and X is contained in Y. (End)
Also the Bell transform of the shifted Bell numbers B(n+1) without column 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016
T(n,k) is the number of partitions of an n-set into colored blocks, such that exactly k colors are used and the colors are introduced in increasing order. T(3,2) = 6: 1a|23b, 13a|2b, 12a|3b, 1a|2a|3b, 1a|2b|3a, 1a|2b|3b. - Alois P. Heinz, Aug 27 2019

Examples

			Triangle begins:
      k = 1    2    3    4    5          sum
  n
  1       1                                1
  2       2    1                           3
  3       5    6    1                     12
  4      15   32   12    1                60
  5      52  175  110   20    1          358
Matrix multiplication Stirling2 * Stirling2:
                  1  0  0  0
                  1  1  0  0
                  1  3  1  0
                  1  7  6  1
.
  1  0  0  0      1  0  0  0
  1  1  0  0      2  1  0  0
  1  3  1  0      5  6  1  0
  1  7  6  1     15 32 12  1
From _Peter Bala_, Jul 19 2014: (Start)
T(5,2) = 175: A 5-set can be partitioned into 2 blocks as either a union of a 3-set and a 2-set or as a union of a 4-set and a singleton set.
In the first case there are 10 ways of partitioning a 5-set into a 3-set and a 2-set. Each 3-set can be further partitioned into sub-blocks in Bell(3) = 5 ways and each 2-set can be further partitioned into sub-blocks in Bell(2) = 2 ways. So altogether we obtain 10*5*2 = 100 double partitions of this type.
In the second case, there are 5 ways of partitioning a 5-set into a 4-set and a 1-set. Each 4-set can be further partitioned in Bell(4) = 15 ways and each 1-set can be further partitioned in Bell(1) = 1 way. So altogether we obtain 5*15*1 = 75 double partitions of this type.
Hence, in total, T(5,2) = 100 + 75 = 175. (End)
		

Crossrefs

Cf. A039811, A039814, A039813 (other products of Stirling matrices).
T(n, 1) = A000110(n) (first column) (Bell numbers).
T(n, 2) = A000558(n) 2-levels set partitions with 2 first-level classes.
T(n, n-1) = A002378(n-1) = n*(n-1) = 2*C(n,2) = set-partitions into (n-2) singletons and one of the two possible set partitions of [2].
Sum is A000258(n), 2-levels set partitions.
Another version with offset 0: A130191.
Horizontal mirror triangle is A046817.
T(2n,n) gives A321712.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> combinat:-bell(n+1), 10); # Peter Luschny, Jan 28 2016
  • Mathematica
    Flatten[Table[Sum[StirlingS2[n,i]*StirlingS2[i,k],{i,k,n}],{n,1,10},{k,1,n}]] (* Indranil Ghosh, Feb 22 2017 *)
    rows = 10;
    t = Table[BellB[n+1], {n, 0, rows}];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
  • PARI
    T(n, k) = sum(j=0, n, stirling(n, j, 2)*stirling(j, k, 2)); \\ Seiichi Manyama, Feb 13 2022

Formula

S2 = A008277 (Stirling numbers of the second kind).
T = (S2)^2.
T(n,k) = Sum_{i=k..n} S2(n,i) * S2(i,k).
E.g.f. of k-th column: (exp(exp(x)-1)-1)^k/k!. [corrected by Seiichi Manyama, Feb 12 2022]
From Peter Bala, Jul 19 2014: (Start)
T(n,k) = Sum_{disjoint unions X_1 U...U X_k = [n]} Bell(|X_1|)*...*Bell(|X_k|), where Bell(n) = A000110(n).
Recurrence equation: T(n+1,k+1) = Sum_{j = k..n} Bell(n+1-j)*binomial(n,j)* T(j,k).
Row sums [1,3,12,60,358,...] = A000258. (End)

Extensions

Definition and interpretation edited by Olivier Gérard, Jul 31 2011

A130191 Square of the Stirling2 matrix A048993.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 5, 6, 1, 0, 15, 32, 12, 1, 0, 52, 175, 110, 20, 1, 0, 203, 1012, 945, 280, 30, 1, 0, 877, 6230, 8092, 3465, 595, 42, 1, 0, 4140, 40819, 70756, 40992, 10010, 1120, 56, 1, 0, 21147, 283944, 638423, 479976, 156072, 24570, 1932, 72, 1
Offset: 0

Views

Author

Wolfdieter Lang, Jun 01 2007

Keywords

Comments

Without row n=0 and column k=0 this is triangle A039810.
This is an associated Sheffer matrix with e.g.f. of the m-th column ((exp(f(x))-1)^m)/m! with f(x)=:exp(x)-1.
The triangle is also called the exponential Riordan array [1, exp(exp(x)-1)]. - Peter Luschny, Apr 19 2015
Also the Bell transform of shifted Bell numbers A000110(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

Examples

			Triangle starts:
  1;
  0,   1;
  0,   2,    1;
  0,   5,    6,    1;
  0,  15,   32,   12,    1;
  0,  52,  175,  110,   20,   1;
  0, 203, 1012,  945,  280,  30,  1;
  0, 877, 6230, 8092, 3465, 595, 42, 1;
		

Crossrefs

Columns k=0..3 give A000007, A000110 (for n > 0), A000558, A000559.
Row sums: A000258.
Alternating row sums: A130410.
T(2n,n) gives A321712.
Cf. A039810 (another version), A048993.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> combinat:-bell(n+1), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 10;
    M = BellMatrix[BellB[# + 1]&, rows];
    Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
    a[n_, m_]:= Sum[StirlingS2[n, k]*StirlingS2[k, m], {k,m,n}]; Table[a[n, m], {n, 0, 100}, {m, 0, n}]//Flatten (* G. C. Greubel, Jul 10 2018 *)
  • PARI
    for(n=0, 9, for(k=0, n, print1(sum(j=k, n, stirling(n, j, 2)*stirling(j, k, 2)), ", "))) \\ G. C. Greubel, Jul 10 2018
  • Sage
    # uses[riordan_array from A256893]
    riordan_array(1, exp(exp(x) - 1), 8, exp=true) # Peter Luschny, Apr 19 2015
    

Formula

a(n,k) = Sum_{j=k..n} S2(n,j) * S2(j,k), n>=k>=0.
E.g.f. row polynomials with argument x: exp(x*f(f(z))).
E.g.f. column k: ((exp(exp(x) - 1) - 1)^k)/k!.

A341589 a(n) = Sum_{k=n..2*n} |Stirling1(2*n, k) * Stirling1(k, n)|.

Original entry on oeis.org

1, 2, 40, 1485, 81088, 5856900, 526685269, 56704848200, 7112345477952, 1018548226480356, 163987811350464660, 29321558852248050388, 5764958268855541178967, 1236150756215397667568170, 287086392921014590422630300, 71789589754855255636302048525, 19231403740347427723119910379040
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Abs[StirlingS1[2 n, k] StirlingS1[k, n]], {k, n, 2 n}], {n, 0, 16}]
    Table[((2 n)!/n!) SeriesCoefficient[(-Log[1 + Log[1 - x]])^n, {x, 0, 2 n}], {n, 0, 16}]
  • PARI
    a(n) = sum(k=n, 2*n, abs(stirling(2*n, k, 1)*stirling(k, n, 1))); \\ Michel Marcus, Feb 16 2021

Formula

a(n) = ((2*n)!/n!) * [x^(2*n)] (-log(1 + log(1 - x)))^n.
From Vaclav Kotesovec, Feb 15 2021: (Start)
a(n) ~ c * d^n * (n-1)!, where
d = -16*p*q^2 * log(-2*q/(1+r))^(1+r) / ((1 + 2*q + r)^2 * (1 + 1/(p*(1+r)))^r) = 17.84101281316291323354184111891200669611476053165484517795417711039479218...
p = LambertW(-1, -1/(exp(1/(1+r))*(1+r)))
q = LambertW(-1, -(1+r)/exp((1+r)/2)/2)
r = 0.5094050884976689299791685259225203723646676600942448390861428232759777841...
is the root of the equation (1+p)*(1+r)^2 * (1 + 2*q + r) * log(-p*(1+r)) + 2*log(-(1+r)/(2*q)) * ((1+q)*(1 + p + p*r) - (1+r) * log(-p*(1+r)) * (p - q + r + p*r + (1+p) * (1+q) * (1+r) * (log(1 + 1/(p*(1+r))) - log(-log(-(1+r)/(2*q)))))) = 0
and c = 0.1417076025518808268972093339771762801784527709... (End)

A341598 a(n) = Sum_{k=n..2*n} |Stirling1(2*n, k)| * Stirling1(k, n).

Original entry on oeis.org

1, 0, 4, 15, 728, 9660, 454333, 11921910, 620800752, 25052417676, 1495629968820, 81260657073596, 5594820193907943, 379090865741895580, 29938401724408721880, 2414113646907092768775, 216602054576835471646080, 20165486015516015341186800, 2034029167741961519973600460
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Abs[StirlingS1[2 n, k]] StirlingS1[k, n], {k, n, 2 n}], {n, 0, 18}]
    Table[((2 n)!/n!) SeriesCoefficient[Log[1 - Log[1 - x]]^n, {x, 0, 2 n}], {n, 0, 18}]
  • PARI
    a(n) = sum(k=n, 2*n, abs(stirling(2*n, k, 1))*stirling(k, n, 1)); \\ Michel Marcus, Feb 16 2021

Formula

a(n) = ((2*n)!/n!) * [x^(2*n)] log(1 - log(1 - x))^n.
a(n) ~ c * d^n * (n-1)!, where d = 5.87606029984908... and c = 0.08380514489... - Vaclav Kotesovec, Feb 17 2021
Showing 1-4 of 4 results.