A130191
Square of the Stirling2 matrix A048993.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 5, 6, 1, 0, 15, 32, 12, 1, 0, 52, 175, 110, 20, 1, 0, 203, 1012, 945, 280, 30, 1, 0, 877, 6230, 8092, 3465, 595, 42, 1, 0, 4140, 40819, 70756, 40992, 10010, 1120, 56, 1, 0, 21147, 283944, 638423, 479976, 156072, 24570, 1932, 72, 1
Offset: 0
Triangle starts:
1;
0, 1;
0, 2, 1;
0, 5, 6, 1;
0, 15, 32, 12, 1;
0, 52, 175, 110, 20, 1;
0, 203, 1012, 945, 280, 30, 1;
0, 877, 6230, 8092, 3465, 595, 42, 1;
- G. C. Greubel, Rows n=0..100 of triangle, flattened
- Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
- Wolfdieter Lang, First 10 rows and more
- John Riordan, Letter, Apr 28 1976. (See third page)
-
# The function BellMatrix is defined in A264428.
BellMatrix(n -> combinat:-bell(n+1), 9); # Peter Luschny, Jan 27 2016
-
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 10;
M = BellMatrix[BellB[# + 1]&, rows];
Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
a[n_, m_]:= Sum[StirlingS2[n, k]*StirlingS2[k, m], {k,m,n}]; Table[a[n, m], {n, 0, 100}, {m, 0, n}]//Flatten (* G. C. Greubel, Jul 10 2018 *)
-
for(n=0, 9, for(k=0, n, print1(sum(j=k, n, stirling(n, j, 2)*stirling(j, k, 2)), ", "))) \\ G. C. Greubel, Jul 10 2018
-
# uses[riordan_array from A256893]
riordan_array(1, exp(exp(x) - 1), 8, exp=true) # Peter Luschny, Apr 19 2015
A351429
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 + f^k(x)), where f(x) = exp(x) - 1.
Original entry on oeis.org
1, 1, -1, 1, -1, 2, 1, -1, 1, -6, 1, -1, 0, -1, 24, 1, -1, -1, 1, 1, -120, 1, -1, -2, 0, 1, -1, 720, 1, -1, -3, -4, 6, -2, 1, -5040, 1, -1, -4, -11, -2, 32, -9, -1, 40320, 1, -1, -5, -21, -41, 76, 115, -9, 1, -362880, 1, -1, -6, -34, -129, -75, 953, 172, 50, -1, 3628800
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
-1, -1, -1, -1, -1, -1, -1, ...
2, 1, 0, -1, -2, -3, -4, ...
-6, -1, 1, 0, -4, -11, -21, ...
24, 1, 1, 6, -2, -41, -129, ...
-120, -1, -2, 32, 76, -75, -806, ...
720, 1, -9, 115, 953, 1540, -3334, ...
-
A:= (n, k)-> n!*(g->coeff(series(1/(1+(g@@k)(x)), x, n+1), x, n))(x->exp(x)-1):
seq(seq(A(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Feb 11 2022
-
T[n_, 0] := (-1)^n*n!; T[n_, k_] := T[n, k] = Sum[StirlingS2[n, j]*T[j, k - 1], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 11 2022 *)
-
T(n, k) = if(k==0, (-1)^n*n!, sum(j=0, n, stirling(n, j, 2)*T(j, k-1)));
A351427
Expansion of e.g.f. 1/exp(exp(exp(exp(x)-1)-1)-1).
Original entry on oeis.org
1, -1, -2, -4, -2, 76, 953, 9103, 77054, 550457, 2123247, -32551171, -1197444063, -26019611323, -478608682879, -7915791047153, -115777452314939, -1320533985179144, -3550854626237496, 455708391448493954, 21276221692251262984, 703173682906460544467
Offset: 0
-
T[n_, 0] := (-1)^n * n!; T[n_, k_] := T[n, k] = Sum[StirlingS2[n, j]*T[j, k - 1], {j, 0, n}]; a[n_] := T[n, 4]; Array[a, 22, 0] (* Amiram Eldar, Feb 11 2022 *)
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/exp(exp(exp(exp(x)-1)-1)-1)))
-
T(n, k) = if(k==0, (-1)^n*n!, sum(j=0, n, stirling(n, j, 2)*T(j, k-1)));
a(n) = T(n, 4);
A351428
Expansion of e.g.f. 1/exp(exp(exp(exp(exp(x)-1)-1)-1)-1).
Original entry on oeis.org
1, -1, -3, -11, -41, -75, 1540, 37725, 657715, 10551750, 163089430, 2407275470, 31865298262, 290682880132, -2479867505029, -267542605513289, -11438897571729494, -404343336811199242, -13192591498632627584, -410340915410006575406, -12233989907129223814578
Offset: 0
-
g:= x-> exp(x)-1:
a:= n-> n! * coeff(series(1/((g@@5)(x)+1), x, n+1), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Feb 11 2022
-
T[n_, 0] := (-1)^n * n!; T[n_, k_] := T[n, k] = Sum[StirlingS2[n, j]*T[j, k - 1], {j, 0, n}]; a[n_] := T[n, 5]; Array[a, 20, 0] (* Amiram Eldar, Feb 11 2022 *)
With[{nn=20},CoefficientList[Series[1/Exp[Exp[Exp[Exp[Exp[x]-1]-1]-1]-1],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Feb 09 2025 *)
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/exp(exp(exp(exp(exp(x)-1)-1)-1)-1)))
-
T(n, k) = if(k==0, (-1)^n*n!, sum(j=0, n, stirling(n, j, 2)*T(j, k-1)));
a(n) = T(n, 5);
A099391
Expansion of e.g.f. 1/(2 - exp(exp(exp(x) - 1) - 1)).
Original entry on oeis.org
1, 1, 5, 36, 342, 4048, 57437, 950512, 17975438, 382424397, 9039989107, 235062317196, 6667866337309, 204905200542916, 6781157167505291, 240446179599065951, 9094120016963808935, 365453749501228063845
Offset: 0
-
With[{nn=20},CoefficientList[Series[1/(2-Exp[Exp[Exp[x]-1]-1]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Apr 10 2014 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(exp(exp(x)-1)-1)))) \\ Seiichi Manyama, May 12 2023
A308518
Expansion of e.g.f. exp(1 - exp(1 - exp(x))).
Original entry on oeis.org
1, 1, 1, 0, -4, -12, -3, 150, 744, 525, -16799, -118280, -148289, 4036802, 37244157, 68676153, -1758280309, -20207442595, -49855713746, 1245931950070, 17250366460410, 53991885230741, -1330935478357842, -21705274324058996, -83339285813776419, 2026672671500822591, 38327819123289163864
Offset: 0
-
nmax = 26; CoefficientList[Series[Exp[1 - Exp[1 - Exp[x]]], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-1)^k StirlingS2[n, k] BellB[k, -1], {k, 0, n}], {n, 0, 26}]
a[n_] := a[n] = -Sum[Binomial[n - 1, k - 1] BellB[k, -1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 26}]
A351421
Expansion of e.g.f. -log(1 - log(1 + log(1+x))).
Original entry on oeis.org
1, -1, 3, -13, 77, -576, 5219, -55567, 680028, -9405302, 145067040, -2468571128, 45936991110, -927915150852, 20219040931738, -472697857817078, 11801903989774760, -313395752536945568, 8819464678850030936, -262185434197432956664, 8210080944919085511680
Offset: 1
-
T[n_, 1] := (n - 1)!; T[n_, k_] := T[n, k] = Sum[StirlingS1[n, j] * T[j, k - 1], {j, 1, n}]; a[n_] := T[n, 3]; Array[a, 21] (* Amiram Eldar, Feb 11 2022 *)
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(-log(1-log(1+log(1+x)))))
-
T(n, k) = if(k==1, (n-1)!, sum(j=1, n, stirling(n, j, 1)*T(j, k-1)));
a(n) = T(n, 3);
Showing 1-7 of 7 results.
Comments