cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A001787 a(n) = n*2^(n-1).

Original entry on oeis.org

0, 1, 4, 12, 32, 80, 192, 448, 1024, 2304, 5120, 11264, 24576, 53248, 114688, 245760, 524288, 1114112, 2359296, 4980736, 10485760, 22020096, 46137344, 96468992, 201326592, 419430400, 872415232, 1811939328, 3758096384, 7784628224, 16106127360, 33285996544
Offset: 0

Views

Author

Keywords

Comments

Number of edges in an n-dimensional hypercube.
Number of 132-avoiding permutations of [n+2] containing exactly one 123 pattern. - Emeric Deutsch, Jul 13 2001
Number of ways to place n-1 nonattacking kings on a 2 X 2(n-1) chessboard for n >= 2. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 22 2001
Arithmetic derivative of 2^n: a(n) = A003415(A000079(n)). - Reinhard Zumkeller, Feb 26 2002
(-1) times the determinant of matrix A_{i,j} = -|i-j|, 0 <= i,j <= n.
a(n) is the number of ones in binary numbers 1 to 111...1 (n bits). a(n) = A000337(n) - A000337(n-1) for n = 2,3,... . - Emeric Deutsch, May 24 2003
The number of 2 X n 0-1 matrices containing n+1 1's and having no zero row or column. The number of spanning trees of the complete bipartite graph K(2,n). This is the case m = 2 of K(m,n). See A072590. - W. Edwin Clark, May 27 2003
Binomial transform of 0,1,2,3,4,5,... (A001477). Without the initial 0, binomial transform of odd numbers.
With an additional leading zero, [0,0,1,4,...] this is the binomial transform of the integers repeated A004526. Its formula is then (2^n*(n-1) + 0^n)/4. - Paul Barry, May 20 2003
Number of zeros in all different (n+1)-bit integers. - Ralf Stephan, Aug 02 2003
From Lekraj Beedassy, Jun 03 2004: (Start)
Final element of a summation table (as opposed to a difference table) whose first row consists of integers 0 through n (or first n+1 nonnegative integers A001477); illustrating the case n=5:
0 1 2 3 4 5
1 3 5 7 9
4 8 12 16
12 20 28
32 48
80
and the final element is a(5)=80. (End)
This sequence and A001871 arise in counting ordered trees of height at most k where only the rightmost branch at the root actually achieves this height and the count is by the number of edges, with k = 3 for this sequence and k = 4 for A001871.
Let R be a binary relation on the power set P(A) of a set A having n = |A| elements such that for all elements x,y of P(A), xRy if x is a proper subset of y and there are no z in P(A) such that x is a proper subset of z and z is a proper subset of y. Then a(n) = |R|. - Ross La Haye, Sep 21 2004
Number of 2 X n binary matrices avoiding simultaneously the right-angled numbered polyomino patterns (ranpp) (00;1) and (10;1). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1 < i2, j1 < j2 and these elements are in same relative order as those in the triple (x,y,z). - Sergey Kitaev, Nov 11 2004
Number of subsequences 00 in all binary words of length n+1. Example: a(2)=4 because in 000,001,010,011,100,101,110,111 the sequence 00 occurs 4 times. - Emeric Deutsch, Apr 04 2005
If you expand the n-factor expression (a+1)*(b+1)*(c+1)*...*(z+1), there are a(n) variables in the result. For example, the 3-factor expression (a+1)*(b+1)*(c+1) expands to abc+ab+ac+bc+a+b+c+1 with a(3) = 12 variables. - David W. Wilson, May 08 2005
An inverse Chebyshev transform of n^2, where g(x)->(1/sqrt(1-4*x^2))*g(x*c(x^2)), c(x) the g.f. of A000108. - Paul Barry, May 13 2005
Sequences A018215 and A058962 interleaved. - Graeme McRae, Jul 12 2006
The number of never-decreasing positive integer sequences of length n with a maximum value of 2*n. - Ben Paul Thurston, Nov 13 2006
Total size of all the subsets of an n-element set. For example, a 2-element set has 1 subset of size 0, 2 subsets of size 1 and 1 of size 2. - Ross La Haye, Dec 30 2006
Convolution of the natural numbers [A000027] and A045623 beginning [0,1,2,5,...]. - Ross La Haye, Feb 03 2007
If M is the matrix (given by rows) [2,1;0,2] then the sequence gives the (1,2) entry in M^n. - Antonio M. Oller-Marcén, May 21 2007
If X_1,X_2,...,X_n is a partition of a 2n-set X into 2-blocks then, for n > 0, a(n) is equal to the number of (n+1)-subsets of X intersecting each X_i (i=1,2,...,n). - Milan Janjic, Jul 21 2007
Number of n-permutations of 3 objects u,v,w, with repetition allowed, containing exactly one u. Example: a(2)=4 because we have uv, vu, uw and wu. - Zerinvary Lajos, Dec 27 2007
A member of the family of sequences defined by a(n) = n*[c(1)*...*c(r)]^(n-1); c(i) integer. This sequence has c(1)=2, A027471 has c(1)=3. - Ctibor O. Zizka, Feb 23 2008
a(n) is the number of ways to split {1,2,...,n-1} into two (possibly empty) complementary intervals {1,2,...,i} and {i+1,i+2,...,n-1} and then select a subset from each interval. - Geoffrey Critzer, Jan 31 2009
Equals the Jacobsthal sequence A001045 convolved with A003945: (1, 3, 6, 12, ...). - Gary W. Adamson, May 23 2009
Starting with offset 1 = A059570: (1, 2, 6, 14, 34, ...) convolved with (1, 2, 2, 2, ...). - Gary W. Adamson, May 23 2009
Equals the first left hand column of A167591. - Johannes W. Meijer, Nov 12 2009
The number of tatami tilings of an n X n square with n monomers is n*2^(n-1). - Frank Ruskey, Sep 25 2010
Under T. D. Noe's variant of the hypersigma function, this sequence gives hypersigma(2^n): a(n) = A191161(A000079(n)). - Alonso del Arte, Nov 04 2011
Number of Dyck (n+2)-paths with exactly one valley at height 1 and no higher valley. - David Scambler, Nov 07 2011
Equals triangle A059260 * A016777 as a vector, where A016777 = (3n + 1): [1, 4, 7, 10, 13, ...]. - Gary W. Adamson, Mar 06 2012
Main transitions in systems of n particles with spin 1/2 (see A212697 with b=2). - Stanislav Sykora, May 25 2012
Let T(n,k) be the triangle with (first column) T(n,1) = 2*n-1 for n >= 1, otherwise T(n,k) = T(n,k-1) + T(n-1,k-1), then a(n) = T(n,n). - J. M. Bergot, Jan 17 2013
Sum of all parts of all compositions (ordered partitions) of n. The equivalent sequence for partitions is A066186. - Omar E. Pol, Aug 28 2013
Starting with a(1)=1: powers of 2 (A000079) self-convolved. - Bob Selcoe, Aug 05 2015
Coefficients of the series expansion of the normalized Schwarzian derivative -S{p(x)}/6 of the polynomial p(x) = -(x-x1)*(x-x2) with x1 + x2 = 1 (cf. A263646). - Tom Copeland, Nov 02 2015
a(n) is the number of North-East lattice paths from (0,0) to (n+1,n+1) that have exactly one east step below y = x-1 and no east steps above y = x+1. Details can be found in Pan and Remmel's link. - Ran Pan, Feb 03 2016
Also the number of maximal and maximum cliques in the n-hypercube graph for n > 0. - Eric W. Weisstein, Dec 01 2017
Let [n]={1,2,...,n}; then a(n-1) is the total number of elements missing in proper subsets of [n] that contain n to form [n]. For example, for n = 3, a(2) = 4 since the proper subsets of [3] that contain 3 are {3}, {1,3}, {2,3} and the total number of elements missing in these subsets to form [3] is 4: 2 in the first subset, 1 in the second, and 1 in the third. - Enrique Navarrete, Aug 08 2020
Number of 3-permutations of n elements avoiding the patterns 132, 231. See Bonichon and Sun. - Michel Marcus, Aug 19 2022

Examples

			a(2)=4 since 2314, 2341,3124 and 4123 are the only 132-avoiding permutations of 1234 containing exactly one increasing subsequence of length 3.
x + 4*x^2 + 12*x^3 + 32*x^4 + 80*x^5 + 192*x^6 + 448*x^7 + ...
a(5) = 1*0 + 5*1 + 10*2 + 10*3 + 5*4 + 1*5 = 80, with 1,5,10,10,5,1 the 5th row of Pascal's triangle. - _J. M. Bergot_, Apr 29 2014
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 131.
  • Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 282.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Three other versions, essentially identical, are A085750, A097067, A118442.
Partial sums of A001792.
A058922(n+1) = 4*A001787(n).
Equals A090802(n, 1).
Column k=1 of A038207.
Row sums of A003506, A322427, A322428.

Programs

  • Haskell
    a001787 n = n * 2 ^ (n - 1)
    a001787_list = zipWith (*) [0..] $ 0 : a000079_list
    -- Reinhard Zumkeller, Jul 11 2014
    
  • Magma
    [n*2^(n-1): n in [0..40]]; // Vincenzo Librandi, Feb 04 2016
    
  • Maple
    spec := [S, {B=Set(Z, 0 <= card), S=Prod(Z, B, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..29); # Zerinvary Lajos, Oct 09 2006
    A001787:=1/(2*z-1)^2; # Simon Plouffe in his 1992 dissertation, dropping the initial zero
  • Mathematica
    Table[Sum[Binomial[n, i] i, {i, 0, n}], {n, 0, 30}] (* Geoffrey Critzer, Mar 18 2009 *)
    f[n_] := n 2^(n - 1); f[Range[0, 40]] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *)
    Array[# 2^(# - 1) &, 40, 0] (* Harvey P. Dale, Jul 26 2011 *)
    Join[{0}, Table[n 2^(n - 1), {n, 20}]] (* Eric W. Weisstein, Dec 01 2017 *)
    Join[{0}, LinearRecurrence[{4, -4}, {1, 4}, 20]] (* Eric W. Weisstein, Dec 01 2017 *)
    CoefficientList[Series[x/(-1 + 2 x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
  • PARI
    {a(n) = if( n<0, 0, n * 2^(n-1))}
    
  • PARI
    concat(0, Vec(x/(1-2*x)^2 + O(x^50))) \\ Altug Alkan, Nov 03 2015
    
  • Python
    def A001787(n): return n*(1<Chai Wah Wu, Nov 14 2022

Formula

a(n) = Sum_{k=1..n} k*binomial(n, k). - Benoit Cloitre, Dec 06 2002
E.g.f.: x*exp(2x). - Paul Barry, Apr 10 2003
G.f.: x/(1-2*x)^2.
G.f.: x / (1 - 4*x / (1 + x / (1 - x))). - Michael Somos, Apr 07 2012
A108666(n) = Sum_{k=0..n} binomial(n, k)^2 * a(n). - Michael Somos, Apr 07 2012
PSumSIGN transform of A053220. PSumSIGN transform is A045883. Binomial transform is A027471(n+1). - Michael Somos, Jul 10 2003
Starting at a(1)=1, INVERT transform is A002450, INVERT transform of A049072, MOBIUS transform of A083413, PSUM transform is A000337, BINOMIAL transform is A081038, BINOMIAL transform of A005408. - Michael Somos, Apr 07 2012
a(n) = 2*a(n-1)+2^(n-1).
a(2*n) = n*4^n, a(2*n+1) = (2*n+1)4^n.
G.f.: x/det(I-x*M) where M=[1,i;i,1], i=sqrt(-1). - Paul Barry, Apr 27 2005
Starting 1, 1, 4, 12, ... this is 0^n + n2^(n-1), the binomial transform of the 'pair-reversed' natural numbers A004442. - Paul Barry, Jul 24 2003
Convolution of [1, 2, 4, 8, ...] with itself. - Jon Perry, Aug 07 2003
The signed version of this sequence, n(-2)^(n-1), is the inverse binomial transform of n(-1)^(n-1) (alternating sign natural numbers). - Paul Barry, Aug 20 2003
a(n-1) = (Sum_{k=0..n} 2^(n-k-1)*C(n-k, k)*C(1,(k+1)/2)*(1-(-1)^k)/2) - 0^n/4. - Paul Barry, Oct 15 2004
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)(n-2k)^2. - Paul Barry, May 13 2005
a(n+2) = A049611(n+2) - A001788(n).
a(n) = n! * Sum_{k=0..n} 1/((k - 1)!(n - k)!). - Paul Barry, Mar 26 2003
a(n+1) = Sum_{k=0..n} 4^k * A109466(n,k). - Philippe Deléham, Nov 13 2006
Row sums of A130300 starting (1, 4, 12, 32, ...). - Gary W. Adamson, May 20 2007
Equals row sums of triangle A134083. Equals A002064(n) + (2^n - 1). - Gary W. Adamson, Oct 07 2007
a(n) = 4*a(n-1) - 4*a(n-2), a(0)=0, a(1)=1. - Philippe Deléham, Nov 16 2008
Sum_{n>0} 1/a(n) = 2*log(2). - Jaume Oliver Lafont, Feb 10 2009
a(n) = A000788(A000225(n)) = A173921(A000225(n)). - Reinhard Zumkeller, Mar 04 2010
a(n) = n * A011782(n). - Omar E. Pol, Aug 28 2013
a(n-1) = Sum_{t_1+2*t_2+...+n*t_n=n} (t_1+t_2+...+t_n-1)*multinomial(t_1+t_2 +...+t_n,t_1,t_2,...,t_n). - Mircea Merca, Dec 06 2013
a(n+1) = Sum_{r=0..n} (2*r+1)*C(n,r). - J. M. Bergot, Apr 07 2014
a(n) = A007283(n)*n/6. - Enxhell Luzhnica, Apr 16 2016
a(n) = (A000225(n) + A000337(n))/2. - Anton Zakharov, Sep 17 2016
Sum_{n>0} (-1)^(n+1)/a(n) = 2*log(3/2) = 2*A016578. - Ilya Gutkovskiy, Sep 17 2016
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} (i+1) * C(k,i). - Wesley Ivan Hurt, Sep 21 2017
a(n) = Sum_{i=1..n} Sum_{j=1..n} phi(i)*binomial(n, i*j). - Ridouane Oudra, Feb 17 2024

A125106 Enumeration of partitions by binary representation: each 1 is a part; the part size is 1 more than the number of 0's in the rest of the number.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 2, 2, 1, 1, 1, 4, 3, 1, 3, 2, 2, 1, 1, 3, 3, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 5, 4, 1, 4, 2, 3, 1, 1, 4, 3, 3, 2, 1, 3, 2, 2, 2, 1, 1, 1, 4, 4, 3, 3, 1, 3, 3, 2, 2, 2, 1, 1, 3, 3, 3, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Alford Arnold, Dec 10 2006

Keywords

Comments

Another way to describe this: starting with the binary representation and a counter set at one, count the 0's from right to left. Write a term equal to the counter for each "1" encountered.
A101211 is a similar sequence, with A005811 elements per row which maps natural numbers to compositions (ordered partitions).
There are two ways to consider this as a table: taking each partition as a row, or taking the partitions generated by 2^(n-1) through 2^n-1 as a row.
Taking the n-th row as multiple partitions, it consists of those partitions with the first hook size (largest part plus number of parts minus 1) equal to n. The number of integers in this n-th row is A001792(n-1), and the row sum is A049611.
Taking each partition as a separate row, the row lengths are A000120, and the row sums are A161511.
Heinz numbers of the rows are A005940. - Gus Wiseman, Jan 17 2023

Examples

			Row 4:
1000 [4]
1001 [3,1]
1010 [3,2]
1011 [2,1,1]
1100 [3,3]
1101 [2,2,1]
1110 [2,2,2]
1111 [1,1,1,1]
		

Crossrefs

Each partition as row: A000120 (row widths), A161511 (row sums), A243499 (row products).
Lasts are A001511.
Firsts are A008687.

Programs

  • Maple
    b:= proc(n) local c, l, m; l:=[][]; m:= n; c:=1;
          while m>0 do if irem(m, 2, 'm')=0 then c:= c+1
             else l:= c, l fi
          od; l
        end:
    T:= n-> seq(b(i), i=2^(n-1)..2^n-1):
    seq(T(n), n=1..7);  # Alois P. Heinz, Sep 25 2015
  • Mathematica
    f[k_] := (bits = IntegerDigits[k, 2]; zerosCount = Reverse[ Accumulate[ 1-Reverse[bits] ] ] + 1; Select[ Transpose[ {bits, zerosCount} ], First[#] == 1 & ][[All, 2]]); row[n_] := Table[ f[k], {k, 2^(n-1), 2^n-1}]; Flatten[ Table[ row[n], {n, 1, 5}]] (* Jean-François Alcover, Jan 24 2012 *)
    scc[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Reverse[scc[n]-Range[Length[scc[n]]]+1],{n,0,20}] (* Gus Wiseman, Jan 17 2023 *)

Formula

Partition 2n is partition n with every part size increased by 1; partition 2n+1 is partition n with an additional part of size 1.
T(n,k) = A272020(n,k) - A000120(n) + k. - Gus Wiseman, Jan 17 2023

Extensions

Edited by Franklin T. Adams-Watters, Jun 11 2009

A055249 Triangle of partial row sums (prs) of triangle A055248 (prs of Pascal's triangle A007318).

Original entry on oeis.org

1, 3, 1, 8, 4, 1, 20, 12, 5, 1, 48, 32, 17, 6, 1, 112, 80, 49, 23, 7, 1, 256, 192, 129, 72, 30, 8, 1, 576, 448, 321, 201, 102, 38, 9, 1, 1280, 1024, 769, 522, 303, 140, 47, 10, 1, 2816, 2304, 1793, 1291, 825, 443, 187, 57, 11, 1, 6144, 5120, 4097, 3084, 2116, 1268, 630
Offset: 0

Views

Author

Wolfdieter Lang, May 26 2000

Keywords

Comments

In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as matrix, belongs to the Riordan-group. The G.f. for the row polynomials p(n,x) (increasing powers of x) is ((1-z)/(1-2*z)^2)/(1-x*z/(1-z)).
This is the second member of the family of Riordan-type matrices obtained from A007318(n,m) (Pascal's triangle read as lower triangular matrix) by repeated application of the prs-procedure.
The column sequences appear in A001792, A001787, A000337, A045618, A045889, A034009, A055250, A055251 for m=0..7.

Examples

			1;
3,1;
8,4,1;
20,12,5,1;
...
Fourth row polynomial (n=3): p(3,x)= 20+12*x+5*x^2+x^3
		

Crossrefs

Cf. A007318, A055248, A008949. Row sums: A049611(n+1) = A055252(n, 0).

Programs

  • Mathematica
    a[n_, m_] := Binomial[n, m]*Hypergeometric2F1[2, m-n, m+1, -1]; Table[a[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Mar 11 2014 *)

Formula

a(n, m) = Sum_{k=m,..,n} ( A055248(n, k) ), n >= m >= 0, a(n, m) := 0 if n
Column m recursion: a(n, m) = Sum_{j=m,..,(n-1)} ( a(j, m) ) + A055248(n, m), n >= m >= 0, a(n, m) := 0 if n
G.f. for column m: ((1-x)/(1-2*x)^2)*(x/(1-x))^m, m >= 0.
a(n, m) = binomial(n, m) * 2F1(2, m-n; m+1; -1) where 2F1 is the hypergeometric function. Jean-François Alcover, Mar 11 2014

A055252 Triangle of partial row sums (prs) of triangle A055249.

Original entry on oeis.org

1, 4, 1, 13, 5, 1, 38, 18, 6, 1, 104, 56, 24, 7, 1, 272, 160, 80, 31, 8, 1, 688, 432, 240, 111, 39, 9, 1, 1696, 1120, 672, 351, 150, 48, 10, 1, 4096, 2816, 1792, 1023, 501, 198, 58, 11, 1, 9728, 6912, 4608, 2815, 1524, 699, 256, 69, 12, 1, 22784, 16640, 11520
Offset: 0

Author

Wolfdieter Lang, May 26 2000

Keywords

Comments

In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as matrix, belongs to the Riordan-group. The G.f. for the row polynomials p(n,x) (increasing powers of x) is (((1-z)^2)/(1-2*z)^3)/(1-x*z/(1-z)).
This is the third member of the family of Riordan-type matrices obtained from A007318(n,m) (Pascal's triangle read as lower triangular matrix) by repeated application of the prs-procedure.
The column sequences appear as A049611(n+1), A001793, A001788, A055580, A055581, A055582, A055583 for m=0..6.

Examples

			[0] 1
[1] 4, 1
[2] 13, 5, 1
[3] 38, 18, 6, 1
[4] 104, 56, 24, 7, 1
[5] 272, 160, 80, 31, 8, 1
[6] 688, 432, 240, 111, 39, 9, 1
[7] 1696, 1120, 672, 351, 150, 48, 10, 1
Fourth row polynomial (n = 3): p(3, x) = 38 + 18*x + 6*x^2 + x^3.
		

Crossrefs

Cf. A007318, A055248, A055249. Row sums: A049612(n+1)= A055584(n, 0).

Programs

  • Maple
    T := (n, k) -> binomial(n, k)*hypergeom([3, k - n], [k + 1], -1):
    for n from 0 to 7 do seq(simplify(T(n, k)), k = 0..n) od; # Peter Luschny, Sep 23 2024

Formula

a(n, m)=sum(A055249(n, k), k=m..n), n >= m >= 0, a(n, m) := 0 if n
Column m recursion: a(n, m)= sum(a(j, m), j=m..n-1)+ A055249(n, m), n >= m >= 0, a(n, m) := 0 if n
G.f. for column m: (((1-x)^2)/(1-2*x)^3)*(x/(1-x))^m, m >= 0.
T(n, k) = binomial(n, k)*hypergeom([3, k - n], [k + 1], -1). - Peter Luschny, Sep 23 2024

A059576 Summatory Pascal triangle T(n,k) (0 <= k <= n) read by rows. Top entry is 1. Each entry is the sum of the parallelogram above it.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 4, 8, 8, 4, 8, 20, 26, 20, 8, 16, 48, 76, 76, 48, 16, 32, 112, 208, 252, 208, 112, 32, 64, 256, 544, 768, 768, 544, 256, 64, 128, 576, 1376, 2208, 2568, 2208, 1376, 576, 128, 256, 1280, 3392, 6080, 8016, 8016, 6080, 3392, 1280, 256
Offset: 0

Author

Floor van Lamoen, Jan 23 2001

Keywords

Comments

We may also relabel the entries as U(0,0), U(1,0), U(0,1), U(2,0), U(1,1), U(0,2), U(3,0), ... [That is, T(n,k) = U(n-k, k) for 0 <= k <= n and U(m,s) = T(m+s, s) for m,s >= 0.]
From Petros Hadjicostas, Jul 16 2020: (Start)
We explain the parallelogram definition of T(n,k).
T(0,0) *
|\
| \
| * T(k,k)
T(n-k,0) * |
\ |
\|
* T(n,k)
The definition implies that T(n,k) is the sum of all T(i,j) such that (i,j) has integer coordinates over the set
{(i,j): a(1,0) + b(1,1), 0 <= a <= n-k, 0 <= b <= k} - {(n,k)}.
The parallelogram can sometimes be degenerate; e.g., when k = 0 or n = k. (End)
T(n,k) is the number of 2-compositions of n having sum of the entries of the first row equal to k (0 <= k <= n). A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n. - Emeric Deutsch, Oct 12 2010
From Michel Marcus and Petros Hadjicostas, Jul 16 2020: (Start)
Robeva and Sun (2020) let A(m,n) = U(m-1, n-1) be the number of subdivisions of a 2-row grid with m points on the top and n points at the bottom (and such that the lower left point is the origin).
The authors proved that A(m,n) = 2*(A(m,n-1) + A(m-1,n) - A(m-1,n-1)) for m, n >= 2 (with (m,n) <> (2,2)), which is equivalent to a similar recurrence for U(n,k) given in the Formula section below. (They did not explicitly specify the value of A(1,1) = U(0,0) because they did not care about the number of subdivisions of a degenerate polygon with only one side.)
They also proved that, for (m,n) <> (1,1), A(m,n) = (2^(m-2)/(n-1)!) * Q_n(m) =
= (2^(m-2)/(n-1)!) * Sum_{k=1..n} A336244(n,k) * m^(n-k), where Q_n(m) is a polynomial in m of degree n-1. (End)
With the square array notation of Petros Hadjicostas, Jul 16 2020 below, U(i,j) is the number of lattice paths from (0,0) to (i,j) whose steps move north or east or have positive slope. For example, representing a path by its successive lattice points rather than its steps, U(1,2) = 8 counts {(0,0),(1,2)}, {(0,0),(0,1),(1,2)}, {(0,0),(0,2),(1,2)}, {(0,0),(1,0),(1,2)}, {(0,0),(1,1),(1,2)}, {(0,0),(0,1),(0,2),(1,2)}, {(0,0),(0,1),(1,1),(1,2)}, {(0,0),(1,0),(1,1),(1,2)}. If north (vertical) steps are excluded, the resulting paths are counted by A049600. - David Callan, Nov 25 2021

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins
[0]   1;
[1]   1,   1;
[2]   2,   3,   2;
[3]   4,   8,   8,   4;
[4]   8,  20,  26,  20,   8;
[5]  16,  48,  76,  76,  48,  16;
[6]  32, 112, 208, 252, 208, 112, 32;
  ...
T(5,2) = 76 is the sum of the elements above it in the parallelogram bordered by T(0,0), T(5-2,0) = T(3,0), T(2,2) and T(5,2). We of course exclude T(5,2) from the summation. Thus
T(5,2) = Sum_{a=0..5-2, b=0..2, (a,b) <> (5-2,2)} T(a(1,0) + b(1,1)) =
= (1 + 1 + 2) + (1 + 3 + 8) + (2 + 8 + 26) + (4 + 20) = 76. [Edited by _Petros Hadjicostas_, Jul 16 2020]
From _Petros Hadjicostas_, Jul 16 2020: (Start)
Square array U(n,k) (with rows n >= 0 and columns k >= 0) begins
   1,   1,   2,    4,    8, ...
   1,   3,   8,   20,   48, ...
   2,   8,  26,   76,  208, ...
   4,  20,  76,  252,  768, ...
   8,  48, 208,  768, 2568, ...
  16, 112, 544, 2208, 8016, ...
  ...
Consider the following 2-row grid with n = 3 points at the top and k = 2 points at the bottom:
   A  B  C
   *--*--*
   |    /
   |   /
   *--*
   D  E
The sets of the dividing internal lines of the A(3,2) = U(3-1, 2-1) = 8 subdivisions of the above 2-row grid are as follows: { }, {DC}, {DB}, {EB}, {EA}, {DB, DC}, {DB, EB}, and {EA, EB}. See Robeva and Sun (2020).
These are the 2-compositions of n = 3 with sum of first row entries equal to k = 1:
[1; 2], [0,1; 2,0], [0,1; 1,1], [1,0; 0,2], [1,0; 1,1], [0,0,1; 1,1,0], [0,1,0; 1,0,1], and [1,0,0; 0,1,1]. We have T(3,2) = 8 such matrices. See _Emeric Deutsch_'s contribution above. See also Section 2 in Castiglione et al. (2007). (End)
		

Programs

  • Haskell
    a059576 n k = a059576_tabl !! n !! k
    a059576_row n = a059576_tabl !! n
    a059576_tabl = [1] : map fst (iterate f ([1,1], [2,3,2])) where
       f (us, vs) = (vs, map (* 2) ws) where
         ws = zipWith (-) (zipWith (+) ([0] ++ vs) (vs ++ [0]))
                          ([0] ++ us ++ [0])
    -- Reinhard Zumkeller, Dec 03 2012
    
  • Magma
    A011782:= func< n | n eq 0 select 1 else 2^(n-1) >;
    function T(n,k) // T = A059576
      if k eq 0 or k eq n then return A011782(n);
      else return 2*T(n-1, k-1) + 2*T(n-1, k) - (2 - 0^(n-2))*T(n-2, k-1);
      end if; return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 02 2022
    
  • Maple
    A059576 := proc(n,k) local b,t1; t1 := min(n+k-2,n,k); add( (-1)^b * 2^(n+k-b-2) * (n+k-b-2)! * (1/(b! * (n-b)! * (k-b)!)) * (-2 * n-2 * k+2 * k^2+b^2-3 * k * b+2 * n^2+5 * n * k-3 * n * b), b=0..t1); end;
    T := proc (n, k) if k <= n then add((-1)^j*2^(n-j-1)*binomial(k, j)*binomial(n-j, k), j = 0 .. min(k, n-k)) fi end proc: 1; for n to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form # Emeric Deutsch, Oct 12 2010
    T := (n, k) -> `if`(n=0, 1, 2^(n-1)*binomial(n, k)*hypergeom([-k, k - n], [-n], 1/2)): seq(seq(simplify(T(n, k)), k=0..n), n=0..10); # Peter Luschny, Nov 26 2021
  • Mathematica
    T[0, 0] = 1; T[n_, k_] := 2^(n-k-1)*n!*Hypergeometric2F1[ -k, -k, -n, -1 ] / (k!*(n-k)!); Flatten[ Table[ T[n, k], {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, Feb 01 2012, after Robert Israel *)
  • SageMath
    def T(n,k): # T = A059576
        if (k==0 or k==n): return 1 if (n==0) else 2^(n-1) # A011782
        else: return 2*T(n-1, k-1) + 2*T(n-1, k) - (2 - 0^(n-2))*T(n-2, k-1)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 02 2022

Formula

T(n, n-1) = A001792(n-1).
T(2*n, n) = A052141(n).
Sum_{k=0..n} T(n, k) = A003480(n).
G.f.: U(z, w) = Sum_{n >= 0, k >= 0} U(n, k)*z^n*w^k = Sum{n >= 0, k >= 0} T(n, k)*z^(n-k)*w^k = (1-z)*(1-w)/(1 - 2*w - 2*z + 2*z*w).
Maple code gives another explicit formula for U(n, k).
From Jon Stadler (jstadler(AT)capital.edu), Apr 30 2003: (Start)
U(n,k) is the number of ways of writing the vector (n,k) as an ordered sum of vectors, equivalently, the number of paths from (0,0) to (n,k) in which steps may be taken from (i,j) to (p,q) provided (p,q) is to the right or above (i,j).
2*U(n,k) = Sum_{i <= n, j <= k} U(i,j).
U(n,k) = 2*U(n-1,k) + Sum_{i < k} U(n,i).
U(n,k) = Sum_{j=0..n+k} C(n,j-k+1)*C(k,j-n+1)*2^j. (End)
T(n, k) = 2*(T(n-1, k-1) + T(n-1, k)) - (2 - 0^(n-2))*T(n-2, k-1) for n > 1 and 1 < k < n; T(n, 0) = T(n, n) = 2*T(n-1, 0) for n > 0; and T(0, 0) = 1. - Reinhard Zumkeller, Dec 03 2004
From Emeric Deutsch, Oct 12 2010: (Start)
Sum_{k=0..n} k*T(n,k) = A181292(n).
T(n,k) = Sum_{j=0..min(k, n-k)} (-1)^j*2^(n-j-1)*binomial(k, j)*binomial(n-j, k) for (n,k) != (0,0).
G.f.: G(t,z) = (1-z)*(1-t*z)/(1 - 2*z - 2*t*z + 2*t*z^2). (End)
U(n,k) = 0 if k < 0; else U(k,n) if k > n; else 1 if n <= 1; else 3 if n = 2 and k = 1; else 2*U(n,k-1) + 2*U(n-1,k) - 2*U(n-1,k-1). - David W. Wilson; corrected in the case k > n by Robert Israel, Jun 15 2011 [Corrected by Petros Hadjicostas, Jul 16 2020]
U(n,k) = binomial(n,k) * 2^(n-1) * hypergeom([-k,-k], [n+1-k], 2) if n >= k >= 0 with (n,k) <> (0,0). - Robert Israel, Jun 15 2011 [Corrected by Petros Hadjicostas, Jul 16 2020]
U(n,k) = Sum_{0 <= i+j <= n+k-1} (-1)^j*C(i+j+1, j)*C(n+i, n)*C(k+i, k). - Masato Maruoka, Dec 10 2019
T(n, k) = 2^(n - 1)*binomial(n, k)*hypergeom([-k, k - n], [-n], 1/2) = A059474(n, k)/2 for n >= 1. - Peter Luschny, Nov 26 2021
From G. C. Greubel, Sep 02 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = T(n, n) = A011782(n).
T(n, n-2) = 2*A049611(n-1), n >= 2.
T(n, n-3) = 4*A049612(n-2), n >= 3.
T(n, n-4) = 8*A055589(n-3), n >= 4.
T(n, n-5) = 16*A055852(n-4), n >= 5.
T(n, n-6) = 32*A055853(n-5), n >= 6.
Sum_{k=0..floor(n/2)} T(n, k) = A181306(n). (End)

A055587 Triangle with columns built from row sums of the partial row sums triangles obtained from Pascal's triangle A007318. Essentially A049600 formatted differently.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 8, 4, 1, 1, 16, 20, 13, 5, 1, 1, 32, 48, 38, 19, 6, 1, 1, 64, 112, 104, 63, 26, 7, 1, 1, 128, 256, 272, 192, 96, 34, 8, 1, 1, 256, 576, 688, 552, 321, 138, 43, 9, 1, 1, 512, 1280, 1696, 1520, 1002, 501, 190, 53, 10, 1, 1, 1024, 2816, 4096
Offset: 0

Author

Wolfdieter Lang, May 30 2000

Keywords

Comments

In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as matrix, belongs to the Riordan-group. The G.f. for the row polynomials p(n,x) (increasing powers of x) is 1/((1-z)*(1-x*z*(1-z)/(1-2*z))).
Column m (without leading zeros) is obtained from convolution of A000012 (powers of 1) with m-fold convoluted A011782.

Examples

			{1}; {1, 1}; {1, 2, 1}; {1, 4, 3, 1}; {1, 8, 8, 4, 1}; ...
Fourth row polynomial (n=3): p(3,x)= 1+4*x+3*x^2+x^3
		

Crossrefs

Cf. A049600, column sequences are A000012 (powers of 1), A000079 (powers of 2), A001792, A049611, A049612, A055589, A055852-5 for m=0..9, row sums: A055588.

Programs

  • Mathematica
    t[n_, k_] := Hypergeometric2F1[k, k-n, 1, -1]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 05 2014, after Paul D. Hanna *)
  • PARI
    {T(n,k) = if( n<0 || k<0, 0, polcoeff( polcoeff( 1 / ((1 - z) * (1 - x*z * (1 - z) / (1 - 2*z) + z * O(z^n) + x * O(x^k))), k), n))}; /* Michael Somos, Sep 30 2003 */
    
  • PARI
    {T(n,k)=if(k>n||n<0||k<0,0,if(k==0||k==n,1, sum(j=0,n-k,binomial(n-k,j)*binomial(k+j-1,k-1)););)} (Hanna)

Formula

a(n, m)= Am(n, 0) if n >= m >= 0 and a(n, m) := 0 if nA007318) with the lower triangular matrix A007318 (Pascal triangle) and prs^(m) is the partial row sums (prs) mapping for triangular matrices applied m times. See e.g. A055584 for m=4.
G.f. for column m: (1/(1-x))*(x*(1-x)/(1-2*x))^m, m >= 0.
T(n, k) = sum_{j=0..n-k} C(n-k, j)*C(k+j-1, k-1). - Paul D. Hanna, Jan 14 2004

A208341 Triangle read by rows, T(n,k) = hypergeometric_2F1([n-k+1, -k], [1], -1) for n>=0 and k>=0.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 1, 4, 8, 8, 1, 5, 13, 20, 16, 1, 6, 19, 38, 48, 32, 1, 7, 26, 63, 104, 112, 64, 1, 8, 34, 96, 192, 272, 256, 128, 1, 9, 43, 138, 321, 552, 688, 576, 256, 1, 10, 53, 190, 501, 1002, 1520, 1696, 1280, 512, 1, 11, 64, 253, 743, 1683, 2972, 4048
Offset: 0

Author

Clark Kimberling, Feb 25 2012

Keywords

Comments

Previous name was: Triangle of coefficients of polynomials v(n,x) jointly generated with A160232; see the Formula section.
Row sums: (1,3,8,...), even-indexed Fibonacci numbers.
Alt. row sums: (1,-1,2,-3,...), signed Fibonacci numbers.
v(n,2) = A107839(n), v(n,n) = 2^(n-1), v(n+1,n) = A001792(n),
v(n+2,n) = A049611, v(n+3,n) = A049612.
Subtriangle of the triangle T(n,k) given by (1, 0, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 12 2012
Essentially triangle in A049600. - Philippe Deléham, Mar 23 2012

Examples

			First five rows:
  1;
  1, 2;
  1, 3,  4;
  1, 4,  8,  8;
  1, 5, 13, 20, 16;
First five polynomials v(n,x):
  1
  1 + 2x
  1 + 3x +  4x^2
  1 + 4x +  8x^2 +  8x^3
  1 + 5x + 13x^2 + 20x^3 + 16x^4
(1, 0, -1/2, 1/2, 0, 0, ...) DELTA (0, 2, 0, 0, 0, ...) begins:
  1;
  1, 0;
  1, 2,  0;
  1, 3,  4,  0;
  1, 4,  8,  8,  0;
  1, 5, 13, 20, 16,  0;
  1, 6, 19, 38, 48, 32, 0;
Triangle in A049600 begins:
  0;
  0, 1;
  0, 1, 2;
  0, 1, 3,  4;
  0, 1, 4,  8,  8;
  0, 1, 5, 13, 20, 16;
  0, 1, 6, 19, 38, 48, 32;
  ... - _Philippe Deléham_, Mar 23 2012
		

Crossrefs

Programs

  • Haskell
    a208341 n k = a208341_tabl !! (n-1) !! (k-1)
    a208341_row n = a208341_tabl !! (n-1)
    a208341_tabl = map reverse a106195_tabl
    -- Reinhard Zumkeller, Dec 16 2013
    
  • Maple
    T := (n,k) -> hypergeom([n-k+1, -k],[1],-1):
    seq(lprint(seq(simplify(T(n,k)),k=0..n)),n=0..7); # Peter Luschny, May 20 2015
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 13;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + 2*x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A160232 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A208341 *)
  • PARI
    T(n,k) = sum(i = 0, k, 2^(k-i)*binomial(n-k,i)*binomial(k,i));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print();); \\ Michel Marcus, Aug 14 2015

Formula

u(n,x) = u(n-1,x) + x*v(n-1,x), v(n,x) = u(n-1,x) + 2x*v(n-1,x), where u(1,x) = 1, v(1,x) = 1.
As DELTA-triangle with 0 <= k <= n: T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 12 2012
G.f.: (1-2*y*x+y*x^2)/(1-x-2*y*x+y*x^2). - Philippe Deléham, Mar 12 2012
T(n,k) = A106195(n-1,n-k), k = 1..n. - Reinhard Zumkeller, Dec 16 2013
From Peter Bala, Aug 11 2015: (Start)
The following remarks assume the row and column indexing start at 0.
T(n,k) = Sum_{i = 0..k} 2^(k-i)*binomial(n-k,i)*binomial(k,i) = Sum_{i = 0..k} binomial(n-k+i,i)*binomial(k,i).
Riordan array (1/(1 - x), x*(2 - x)/(1 - x)).
O.g.f. 1/(1 - (2*t + 1)*x + t*x^2) = 1 + (1 + 2*t)*x + (1 + 3*t + 4*t^2)*x^2 + ....
Read as a square array, this equals P * transpose(P^2), where P denotes Pascal's triangle A007318. (End)
For kGlen Whitney, Aug 17 2021

Extensions

New name from Peter Luschny, May 20 2015
Offset corrected by Joerg Arndt, Aug 12 2015

A076616 Number of permutations of {1,2,...,n} that result in a binary search tree (when elements of the permutation are inserted in that order) of height n-1 (i.e., the second largest possible height).

Original entry on oeis.org

0, 0, 0, 2, 16, 64, 208, 608, 1664, 4352, 11008, 27136, 65536, 155648, 364544, 843776, 1933312, 4390912, 9895936, 22151168, 49283072, 109051904, 240123904, 526385152, 1149239296, 2499805184, 5419040768, 11710496768, 25232932864, 54223962112, 116232552448
Offset: 0

Author

Jeffrey Shallit, Oct 22 2002

Keywords

Examples

			a(3) = 2 because only the permutations (2,1,3) and (2,3,1) result in a search tree of height 2 (notice we count empty external nodes in determining the height). The largest such trees are of height 3.
		

Crossrefs

Lower diagonal of A195581 or of A244108.

Programs

  • Maple
    a:= n-> max(-(<<0|1|0>, <0|0|1>, <8|-12|6>>^n. <<1/2, 1, 1>>)[1$2], 0):
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 20 2011
  • Mathematica
    Join[{0, 0, 0}, LinearRecurrence[{6, -12, 8}, {2, 16, 64}, 40]] (* Jean-François Alcover, Jan 09 2025 *)
  • PARI
    concat(vector(3), Vec(2*x^3*(1+2*x-4*x^2)/(1-2*x)^3 + O(x^50))) \\ Colin Barker, May 16 2016

Formula

G.f.: 2*(4*x^2-2*x-1)*x^3/(2*x-1)^3. - Alois P. Heinz, Sep 20 2011
From Colin Barker, May 16 2016: (Start)
a(n) = 2^(n-3)*(n^2-n-4) for n>2.
a(n) = 6*a(n-1)-12*a(n-2)+8*a(n-3) for n>5.
(End)
From Alois P. Heinz, May 31 2022: (Start)
a(n) = 2 * A100312(n-3) for n>=3.
a(n) = 16 * A049611(n-3) = 16 * A084851(n-4) for n>=4. (End)

Extensions

More terms from Alois P. Heinz, Sep 20 2011

A084851 Binomial transform of binomial(n+2,2).

Original entry on oeis.org

1, 4, 13, 38, 104, 272, 688, 1696, 4096, 9728, 22784, 52736, 120832, 274432, 618496, 1384448, 3080192, 6815744, 15007744, 32899072, 71827456, 156237824, 338690048, 731906048, 1577058304, 3388997632, 7264534528, 15535702016, 33151778816
Offset: 0

Author

Paul Barry, Jun 09 2003

Keywords

Comments

Essentially the same as A049611.

Examples

			From _Bruno Berselli_, Jul 17 2018: (Start)
Let the triangle:
   1
   3,  4
   6,  9,  13
  10, 16,  25,  38
  15, 25,  41,  66, 104
  21, 36,  61, 102, 168, 272
  28, 49,  85, 146, 248, 416,  688
  36, 64, 113, 198, 344, 592, 1008, 1696, etc.
where the first column is A000217 (without 0). The other terms are calculated with the recurrence T(r, c) = T(r-1, c-1) + T(r, c-1).
The sequence is the right side of the triangle.
(End)
		

Crossrefs

Cf. A000217, A049611, A058396 (first differences).

Programs

  • Magma
    [(n^2+7*n+8)*2^(n-3): n in [0..40]]; // Vincenzo Librandi, Aug 03 2014
  • Maple
    a := n -> hypergeom([-n, 3], [1], -1);
    seq(round(evalf(a(n),32)), n=0..31); # Peter Luschny, Aug 02 2014
  • Mathematica
    CoefficientList[ Series[(1 - x)^2/(1 - 2 x)^3, {x, 0, 28}], x] (* Robert G. Wilson v, Jun 28 2005 *)
    LinearRecurrence[{6,-12,8},{1,4,13},30] (* Harvey P. Dale, Aug 05 2019 *)

Formula

G.f.: (1 - x)^2/(1 - 2*x)^3.
a(n) = (n^2 + 7*n + 8)*2^(n - 3).
a(n) = Sum_{k=0..n} C(n, k)*C(k+2, 2).
a(n) = A049611(n+1).

A058395 Square array read by antidiagonals. Based on triangular numbers (A000217) with each term being the sum of 2 consecutive terms in the previous row.

Original entry on oeis.org

1, 0, 1, 3, 1, 1, 0, 3, 2, 1, 6, 3, 4, 3, 1, 0, 6, 6, 6, 4, 1, 10, 6, 9, 10, 9, 5, 1, 0, 10, 12, 15, 16, 13, 6, 1, 15, 10, 16, 21, 25, 25, 18, 7, 1, 0, 15, 20, 28, 36, 41, 38, 24, 8, 1, 21, 15, 25, 36, 49, 61, 66, 56, 31, 9, 1, 0, 21, 30, 45, 64, 85, 102, 104, 80, 39, 10, 1, 28, 21, 36, 55, 81, 113, 146, 168, 160, 111, 48, 11, 1
Offset: 0

Author

Henry Bottomley, Nov 24 2000

Keywords

Comments

Changing the formula by replacing T(2n, 0) = T(n, 3) with T(2n, 0) = T(n, m) for some other value of m would change the generating function to the coefficient of x^n in expansion of (1 + x)^k / (1 - x^2)^m. This would produce A058393, A058394, A057884 (and effectively A007318).

Examples

			The array T(n, k) starts:
[0] 1, 0,  3,   0,   6,   0,  10,    0,   15,    0, ...
[1] 1, 1,  3,   3,   6,   6,  10,   10,   15,   15, ...
[2] 1, 2,  4,   6,   9,  12,  16,   20,   25,   30, ...
[3] 1, 3,  6,  10,  15,  21,  28,   36,   45,   55, ...
[4] 1, 4,  9,  16,  25,  36,  49,   64,   81,  100, ...
[5] 1, 5, 13,  25,  41,  61,  85,  113,  145,  181, ...
[6] 1, 6, 18,  38,  66, 102, 146,  198,  258,  326, ...
[7] 1, 7, 24,  56, 104, 168, 248,  344,  456,  584, ...
[8] 1, 8, 31,  80, 160, 272, 416,  592,  800, 1040, ...
[9] 1, 9, 39, 111, 240, 432, 688, 1008, 1392, 1840, ...
		

Crossrefs

Rows are A000217 with zeros, A008805, A002620, A000217, A000290, A001844, A005899.
Columns are A000012, A001477, A016028.
The triangle A055252 also appears in half of the array.

Programs

  • Maple
    gf := n -> (1 + x)^n / (1 - x^2)^3: ser := n -> series(gf(n), x, 20):
    seq(lprint([n], seq(coeff(ser(n), x, k), k = 0..9)), n = 0..9); # Peter Luschny, Apr 12 2023
  • Mathematica
    T[0, k_] := If[OddQ[k], 0, (k+2)(k+4)/8];
    T[n_, k_] := T[n, k] = If[k == 0, 1, T[n-1, k-1] + T[n-1, k]];
    Table[T[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Apr 13 2023 *)

Formula

T(n, k) = T(n-1, k-1) + T(n, k-1) with T(0, k) = 1, T(2*n, 0) = T(n, 3) and T(2*n + 1, 0) = 0. Coefficient of x^n in expansion of (1 + x)^k / (1 - x^2)^3.
Showing 1-10 of 19 results. Next