cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A210554 Triangle of coefficients of polynomials v(n,x) jointly generated with A208341; see the Formula section.

Original entry on oeis.org

1, 2, 2, 3, 5, 4, 4, 9, 12, 8, 5, 14, 25, 28, 16, 6, 20, 44, 66, 64, 32, 7, 27, 70, 129, 168, 144, 64, 8, 35, 104, 225, 360, 416, 320, 128, 9, 44, 147, 363, 681, 968, 1008, 704, 256, 10, 54, 200, 553, 1182, 1970, 2528, 2400, 1536, 512
Offset: 1

Views

Author

Clark Kimberling, Mar 22 2012

Keywords

Comments

For a discussion and guide to related arrays, see A208510.
Also the number of multisets of size k that fit within some normal multiset of size n. A multiset is normal if it spans an initial interval of positive integers. - Andrew Howroyd, Sep 18 2018

Examples

			Triangle begins:
  1;
  2,  2;
  3,  5,   4;
  4,  9,  12,   8;
  5, 14,  25,  28,  16;
  6, 20,  44,  66,  64,  32;
  7, 27,  70, 129, 168, 144, 64;
  ...
First three polynomials v(n,x): 1, 2 + 2x , 3 + 5x + 4x^2.
The T(3, 1) = 3 multisets: (1), (2), (3).
The T(3, 2) = 5 multisets: (11), (12), (13), (22), (23).
The T(3, 3) = 4 multisets: (111), (112), (122), (123).
		

Crossrefs

Row sums are A027941.

Programs

  • Maple
    T := (n,k) -> simplify((n + 1 - k)*hypergeom([1 - k, -k + n + 2], [2], -1)):
    seq(seq(T(n,k), k=1..n), n=1..10); # Peter Luschny, Sep 18 2018
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
    v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A208341 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A210554 *)
  • PARI
    T(n,k)={sum(i=1, k, binomial(k-1, i-1)*binomial(n-k+i, i))} \\ Andrew Howroyd, Sep 18 2018

Formula

u(n,x)=x*u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
T(n,k) = Sum_{i=1..k} binomial(k-1, i-1)*binomial(n-k+i, i). - Andrew Howroyd, Sep 18 2018
T(n,k) = (n - k + 1)*hypergeom([1 - k, n - k + 2], [2], -1). - Peter Luschny, Sep 18 2018

Extensions

Example corrected by Philippe Deléham, Mar 23 2012

A208510 Triangle of coefficients of polynomials u(n,x) jointly generated with A029653; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 4, 1, 1, 7, 9, 5, 1, 1, 9, 16, 14, 6, 1, 1, 11, 25, 30, 20, 7, 1, 1, 13, 36, 55, 50, 27, 8, 1, 1, 15, 49, 91, 105, 77, 35, 9, 1, 1, 17, 64, 140, 196, 182, 112, 44, 10, 1, 1, 19, 81, 204, 336, 378, 294, 156, 54, 11, 1, 1, 21, 100, 285, 540, 714, 672, 450, 210, 65, 12, 1
Offset: 1

Views

Author

Clark Kimberling, Feb 28 2012

Keywords

Comments

Row sums: A083329
Alternating row sums: 1,0,-1,-1,-1,-1,-1,-1,-1,-1,...
Antidiagonal sums: A000071 (-1+Fibonacci numbers)
col 1: A000012
col 2: A005408
col 3: A000290
col 4: A000330
col 5: A002415
col 6: A005585
col 7: A040977
col 8: A050486
col 9: A053347
col 10: A054333
col 11: A054334
col 12: A057788
col 2n-1 of A208510 is column n of A208508
col 2n of A208510 is column n of A208509.
...
GENERAL DISCUSSION:
A208510 typifies arrays generated by paired recurrence equations of the following form:
u(n,x)=a(n,x)*u(n-1,x)+b(n,x)*v(n-1,x)+c(n,x)
v(n,x)=d(n,x)*u(n-1,x)+e(n,x)*v(n-1,x)+f(n,x).
...
These first-order recurrences imply separate second-order recurrences. In order to show them, the six functions a(n,x),...,f(n,x) are abbreviated as a,b,c,d,e,f.
Then, starting with initial values u(1,x)=1 and u(2,x)=a+b+c: u(n,x) = (a+e)u(n-1,x) + (bd-ae)u(n-2,x) + bf-ce+c.
With initial values v(1,x)=1 and v(2,x)=d+e+f: v(n,x) = (a+e)v(n-1,x) + (bd-ae)v(n-2,x) + cd-af+f.
...
In the guide below, the last column codes certain sequences that occur in one of these ways: row, column, edge, row sum, alternating row sum. Coding:
A: 1,-1,1,-1,1,-1,1.... A033999
B: 1,2,4,8,16,32,64,... powers of 2
C: 1,1,1,1,1,1,1,1,.... A000012
D: 2,2,2,2,2,2,2,2,.... A007395
E: 2,4,6,8,10,12,14,... even numbers
F: 1,1,2,3,5,8,13,21,.. Fibonacci numbers
N: 1,2,3,4,5,6,7,8,.... A000027
O: 1,3,5,7,9,11,13,.... odd numbers
P: 1,3,9,27,81,243,.... powers of 3
S: 1,4,9,16,25,36,49,.. squares
T: 1,3,6,10,15,21,38,.. triangular numbers
Z: 1,0,0,0,0,0,0,0,0,.. A000007
*: (eventually) periodic alternating row sums
^: has a limiting row; i.e., the polynomials "approach" a power series
This coding includes indirect and repeated occurrences; e.g. F occurs thrice at A094441: in column 1 directly as Fibonacci numbers, in row sums as odd-indexed Fibonacci numbers, and in alternating row sums as signed Fibonacci numbers.
......... a....b....c....d....e....f....code
A034839 u 1....1....0....1....x....0....CCOT
A034867 v 1....1....0....1....x....0....CEN
A210221 u 1....1....0....1....2x...0....BBFF
A210596 v 1....1....0....1....2x...0....BBFF
A105070 v 1....2x...0....1....1....0....BN
A207605 u 1....1....0....1....x+1..0....BCFFN
A106195 v 1....1....0....1....x+1..0....BCFFN
A207606 u 1....1....0....x....x+1..0....DNT
A207607 v 1....1....0....x....x+1..0....DNT
A207608 u 1....1....0....2x...x+1..0....N
A207609 v 1....1....0....2x...x+1..0....C
A207610 u 1....1....0....1....x....1....CF
A207611 v 1....1....0....1....x....1....BCF
A207612 u 1....1....0....1....2x...1....BF
A207613 v 1....1....0....1....2x...1....BF
A207614 u 1....1....0....1....x+1..1....CN
A207615 v 1....1....0....1....x+1..1....CFN
A207616 u 1....1....0....x....1....1....CE
A207617 v 1....1....0....x....1....1....CNO
A029638 u 1....1....0....x....x....1....CDNO
A029635 v 1....1....0....x....x....1....CDNOZ
A207618 u 1....1....0....x....2x...1....N
A207619 v 1....1....0....x....2x...1....CFN
A207620 u 1....1....0....x....x+1..1....DET
A207621 v 1....1....0....x....x+1..1....DNO
A207622 u 1....1....0....2x...1....1....BT
A207623 v 1....1....0....2x...1....1....BN
A207624 u 1....1....0....2x...x....1....N
A102662 v 1....1....0....2x...x....1....CO
A207625 u 1....1....0....2x...x+1..1....T
A207626 v 1....1....0....2x...x+1..1....N
A207627 u 1....1....0....2x...2x...1....BN
A207628 v 1....1....0....2x...2x...1....BCE
A207629 u 1....1....0....x+1..1....1....CET
A207630 v 1....1....0....x+1..1....1....CO
A207631 u 1....1....0....x+1..x....1....DF
A207632 v 1....1....0....x+1..x....1....DEF
A207633 u 1....1....0....x+1..2x...1....F
A207634 v 1....1....0....x+1..2x...1....F
A207635 u 1....1....0....x+1..x+1..1....DN
A207636 v 1....1....0....x+1..x+1..1....CD
A160232 u 1....x....0....1....2x...0....BCFN
A208341 v 1....x....0....1....2x...0....BCFFN
A085478 u 1....x....0....1....x+1..0....CCOFT*
A078812 v 1....x....0....1....x+1..0....CEFN*
A208342 u 1....x....0....x....x....0....CCFNO
A208343 v 1....x....0....x....x....0....BBCDFZ
A208344 u 1....x....0....x....2x...0....CCFN
A208345 v 1....x....0....x....2x...0....CFZ
A094436 u 1....x....0....x....x+1..0....CFFN
A094437 v 1....x....0....x....x+1..0....CEFF
A117919 u 1....x....0....2x...1....0....BCNT
A135837 v 1....x....0....2x...1....0....BCET
A208328 u 1....x....0....2x...x....0....CCOP
A208329 v 1....x....0....2x...x....0....DPZ
A208330 u 1....x....0....2x...x+1..0....CNPT
A208331 v 1....x....0....2x...x+1..0....CN
A208332 u 1....x....0....2x...2x...0....CCE
A208333 v 1....x....0....2x...2x...0....DZ
A208334 u 1....x....0....x+1..1....0....CCNT
A208335 v 1....x....0....x+1..1....0....CCN*
A208336 u 1....x....0....x+1..x....0....CFNT*
A208337 v 1....x....0....x+1..x....0....ACFN*
A208338 u 1....x....0....x+1..2x...0....CNP
A208339 v 1....x....0....x+1..2x...0....BCNP
A202390 u 1....x....0....x+1..x+1..0....CFPTZ*
A208340 v 1....x....0....x+1..x+1..0....FNPZ*
A208508 u 1....x....0....1....1....1....CCES
A208509 v 1....x....0....1....1....1....BCO
A208510 u 1....x....0....1....x....1....CCCNOS*
A029653 v 1....x....0....1....x....1....BCDOSZ*
A208511 u 1....x....0....1....2x...1....BCFO
A208512 v 1....x....0....1....2x...1....BDFO
A208513 u 1....x....0....1....x+1..1....CCES*
A111125 v 1....x....0....1....x+1..1....COO*
A133567 u 1....x....0....x....1....1....CCOTT
A133084 v 1....x....0....x....1....1....BBCEN
A208514 u 1....x....0....x....x....1....CEFN
A208515 v 1....x....0....x....x....1....BCDFN
A208516 u 1....x....0....x....2x...1....CNN
A208517 v 1....x....0....x....2x...1....CCN
A208518 u 1....x....0....x....x+1..1....CFNT
A208519 v 1....x....0....x....x+1..1....NFFT
A208520 u 1....x....0....2x...1....1....BCTT
A208521 v 1....x....0....2x...1....1....BEN
A208522 u 1....x....0....2x...x....1....CCN
A208523 v 1....x....0....2x...x....1....CCO
A208524 u 1....x....0....2x...x+1..1....CT*
A208525 v 1....x....0....2x...x+1..1....ACNP*
A208526 u 1....x....0....2x...2x...1....CEN
A208527 v 1....x....0....2x...2x...1....CCE
A208606 u 1....x....0....x+1..1....1....CCS
A208607 v 1....x....0....x+1..1....1....CNO
A208608 u 1....x....0....x+1..x....1....CFOT
A208609 v 1....x....0....x+1..x....1....DEN*
A208610 u 1....x....0....x+1..2x...1....CO
A208611 v 1....x....0....x+1..2x...1....DE
A208612 u 1....x....0....x+1..x+1..1....CFNS
A208613 v 1....x....0....x+1..x+1..1....CFN*
A105070 u 1....2x...0....1....1....0....BN
A207536 u 1....2x...0....1....1....0....BCT
A208751 u 1....2x...0....1....x+1..0....CDPT
A208752 v 1....2x...0....1....x+1..0....CNP
A135837 u 1....2x...0....x....1....0....BCNT
A117919 v 1....2x...0....x....1....0....BCNT
A208755 u 1....2x...0....x....x....0....BCDEP
A208756 v 1....2x...0....x....x....0....BCCOZ
A208757 u 1....2x...0....x....2x...0....CDEP
A208758 v 1....2x...0....x....2x...0....CCEPZ
A208763 u 1....2x...0....2x...x....0....CDOP
A208764 v 1....2x...0....2x...x....0....CCCP
A208765 u 1....2x...0....2x...x+1..0....CE
A208766 v 1....2x...0....2x...x+1..0....CC
A208747 u 1....2x...0....2x...2x...0....CDE
A208748 v 1....2x...0....2x...2x...0....CCZ
A208749 u 1....2x...0....x+1..1....0....BCOPT
A208750 v 1....2x...0....x+1..1....0....BCNP*
A208759 u 1....2x...0....x+1..2x....0...CE
A208760 v 1....2x...0....x+1..2x....0...BCO
A208761 u 1....2x...0....x+1..x+1...0...BCCT*
A208762 v 1....2x...0....x+1..x+1...0...BNZ*
A208753 u 1....2x...0....1....1.....1...BCS
A208754 v 1....2x...0....1....1.....1...BO
A105045 u 1....2x...0....1....2x....1...BCCOS*
A208659 v 1....2x...0....1....2x....1...BDOSZ*
A208660 u 1....2x...0....1....x+1...1...CDS
A208904 v 1....2x...0....1....x+1...1...CNO
A208905 u 1....2x...0....x....1.....1...BCT
A208906 v 1....2x...0....x....1.....1...BNN
A208907 u 1....2x...0....x....x.....1...BCN
A208756 v 1....2x...0....x....x.....1...BCCE
A208755 u 1....2x...0....x....2x....1...CEN
A208910 v 1....2x...0....x....2x....1...CCE
A208911 u 1....2x...0....x....x+1...1...BCT
A208912 v 1....2x...0....x....x+1...1...BNT
A208913 u 1....2x...0....2x...1.....1...BCT
A208914 v 1....2x...0....2x...1.....1...BEN
A208915 u 1....2x...0....2x...x.....1...CE
A208916 v 1....2x...0....2x...x.....1...CCO
A208919 u 1....2x...0....2x...x+1...1...CT
A208920 v 1....2x...0....2x...x+1...1...N
A208917 u 1....2x...0....2x...2x....1...CEN
A208918 v 1....2x...0....2x...2x....1...CCNP
A208921 u 1....2x...0....x+1..1.....1...BC
A208922 v 1....2x...0....x+1..1.....1...BON
A208923 u 1....2x...0....x+1..x.....1...BCNO
A208908 v 1....2x...0....x+1..x.....1...BDN*
A208909 u 1....2x...0....x+1..2x....1...BN
A208930 v 1....2x...0....x+1..2x....1...DN
A208931 u 1....2x...0....x+1..x+1...1...BCOS
A208932 v 1....2x...0....x+1..x+1...1...BCO*
A207537 u 1....x+1..0....1....1.....0...BCO
A207538 v 1....x+1..0....1....1.....0...BCE
A122075 u 1....x+1..0....1....x.....0...CCFN*
A037027 v 1....x+1..0....1....x.....0...CCFN*
A209125 u 1....x+1..0....1....2x....0...BCFN*
A164975 v 1....x+1..0....1....2x....0...BF
A209126 u 1....x+1..0....x....x.....0...CDFO*
A209127 v 1....x+1..0....x....x.....0...DFOZ*
A209128 u 1....x+1..0....x....2x....0...CDE*
A209129 v 1....x+1..0....x....2x....0...DEZ
A102756 u 1....x+1..0....x....x+1...0...CFNP*
A209130 v 1....x+1..0....x....x+1...0...CCFNP*
A209131 u 1....x+1..0....2x...x.....0...CDEP*
A209132 v 1....x+1..0....2x...x.....0...CNPZ*
A209133 u 1....x+1..0....2x...2x....0...CDN
A209134 v 1....x+1..0....2x...2x....0...CCN*
A209135 u 1....x+1..0....2x...x+1...0...CN*
A209136 v 1....x+1..0....2x...x+1...0...CCS*
A209137 u 1....x+1..0....x+1..x.....0...CFFP*
A209138 v 1....x+1..0....x+1..x.....0...AFFP*
A209139 u 1....x+1..0....x+1..2x....0...CF*
A209140 v 1....x+1..0....x+1..2x....0...BF
A209141 u 1....x+1..0....x+1..x+1...0...BCF*
A209142 v 1....x+1..0....x+1..x+1...0...BFZ*
A209143 u 1....x+1..0....1....1.....1...CCE*
A209144 v 1....x+1..0....1....1.....1...COO*
A209145 u 1....x+1..0....1....x.....1...CCFN*
A122075 v 1....x+1..0....1....x.....1...CCFN*
A209146 u 1....x+1..0....1....2x....1...BCF*
A209147 v 1....x+1..0....1....2x....1...BF
A209148 u 1....x+1..0....1....x+1...1...CCO*
A209149 v 1....x+1..0....1....x+1...1...CDO*
A209150 u 1....x+1..0....x....1.....1...CCNT*
A208335 v 1....x+1..0....x....1.....1...CDNN*
A209151 u 1....x+1..0....x....x.....1...CFN*
A208337 v 1....x+1..0....x....x.....1...ACFN*
A209152 u 1....x+1..0....x....2x....1...CN*
A208339 v 1....x+1..0....x....x.....1...BCN
A209153 u 1....x+1..0....x....x+1...1...CFT*
A208340 v 1....x+1..0....x....x.....1...FNZ*
A209154 u 1....x+1..0....2x...1.....1...BCT*
A209157 v 1....x+1..0....2x...1.....1...BNN
A209158 u 1....x+1..0....2x...x.....1...CN*
A209159 v 1....x+1..0....2x...x.....1...CO*
A209160 u 1....x+1..0....2x...2x....1...CN*
A209161 v 1....x+1..0....2x...2x....1...CE
A209162 u 1....x+1..0....2x...x+1...1...CT*
A209163 v 1....x+1..0....2x...x+1...1...CO*
A209164 u 1....x+1..0....x+1..1.....1...CC*
A209165 v 1....x+1..0....x+1..1.....1...CCN
A209166 u 1....x+1..0....x+1..x.....1...CFF*
A209167 v 1....x+1..0....x+1..x.....1...FF*
A209168 u 1....x+1..0....x+1..2x....1...CF*
A209169 v 1....x+1..0....x+1..2x....1...CF
A209170 u 1....x+1..0....x+1..x+1...1...CF*
A209171 v 1....x+1..0....x+1..x+1...1...CF*
A053538 u x....1....0....1....1.....0...BBCCFN
A076791 v x....1....0....1....1.....0...BBCDF
A209172 u x....1....0....1....2x....0...BCCFF
A209413 v x....1....0....1....2x....0...BCCFF
A094441 u x....1....0....1....x+1...0...CFFFN
A094442 v x....1....0....1....x+1...0...CEFFF
A054142 u x....1....0....x....x+1...0...CCFOT*
A172431 v x....1....0....x....x+1...0...CEFN*
A008288 u x....1....0....2x...1.....0...CCOO*
A035607 v x....1....0....2x...1.....0...ACDE*
A209414 u x....1....0....2x...x+1...0...CCS
A112351 v x....1....0....2x...x+1...0...CON
A209415 u x....1....0....x+1..x.....0...CCTN
A209416 v x....1....0....x+1..x.....0...ACN*
A209417 u x....1....0....x+1..2x....0...CC
A209418 v x....1....0....x+1..2x....0...BBC
A209419 u x....1....0....x+1..x+1...0...CFTZ*
A209420 v x....1....0....x+1..x+1...0...FNZ*
A209421 u x....1....0....1....1.....1...CCN
A209422 v x....1....0....1....1.....1...CD
A209555 u x....1....0....1....x.....1...CNN
A209556 v x....1....0....1....x.....1...CNN
A209557 u x....1....0....1....2x....1...BCN
A209558 v x....1....0....1....2x....1...BN
A209559 u x....1....0....1....x+1...1...CN
A209560 v x....1....0....1....x+1...1...CN
A209561 u x....1....0....x....1.....1...CCNNT*
A209562 v x....1....0....x....1.....1...CDNNT*
A209563 u x....1....0....x....x.....1...CCFT^
A209564 v x....1....0....x....x.....1...CFN^
A209565 u x....1....0....x....2x....1...CC^
A209566 v x....1....0....x....2x....1...BC^
A209567 u x....1....0....x....x+1...1...CNT*
A209568 v x....1....0....x....x+1...1...NNS*
A209569 u x....1....0....2x...1.....1...CNO*
A209570 v x....1....0....2x...1.....1...DNN*
A209571 u x....1....0....2x...x.....1...CCS^
A209572 v x....1....0....2x...x.....1...CN^
A209573 u x....1....0....2x...x+1...1...CNS
A209574 v x....1....0....2x...x+1...1...NO
A209575 u x....1....0....2x...2x....1...CC
A209576 v x....1....0....2x...2x....1...C
A209577 u x....1....0....x+1..1.....1...CNNT
A209578 v x....1....0....x+1..1.....1...CNN
A209579 u x....1....0....x+1..x.....1...CNNT
A209580 v x....1....0....x+1..x.....1...NN*
A209581 u x....1....0....x+1..2x....1...CN
A209582 v x....1....0....x+1..2x....1...BN
A209583 u x....1....0....x+1..x+1...1...CT*
A209584 v x....1....0....x+1..x+1...1...CN*
A121462 u x....x....0....x....x+1...0...BCFFNZ
A208341 v x....x....0....x....x+1...0...BCFFN
A209687 u x....x....0....2x...x+1...0...BCNZ
A208339 v x....x....0....2x...x+1...0...BCN
A115241 u x....x....0....1....1.....1...CDNZ*
A209688 v x....x....0....1....1.....1...DDN*
A209689 u x....x....0....1....x.....1...FNZ^
A209690 v x....x....0....1....x.....1...FN^
A209691 u x....x....0....1....2x....1...BCZ^
A209692 v x....x....0....1....2x....1...BCC^
A209693 u x....x....0....1....x+1...1...NNZ*
A209694 v x....x....0....1....x+1...1...CN*
A209697 u x....x....0....x....x+1...1...BNZ
A209698 v x....x....0....x....x+1...1...BNT
A209699 u x....x....0....2x...1.....1...BNNZ
A209700 v x....x....0....2x...1.....1...BDN
A209701 u x....x....0....2x...x+1...1...NZ
A209702 v x....x....0....2x...x+1...1...N
A209703 u x....x....0....x+1..1.....1...FNTZ
A209704 v x....x....0....x+1..1.....1...FNNT
A209705 u x....x....0....x+1..x+1...1...BNZ*
A209706 v x....x....0....x+1..x+1...1...BCN*
A209695 u x....x+1..0....2x...x+1...0...ACN*
A209696 v x....x+1..0....2x...x+1...0...CDN*
A209830 u x....x+1..0....x+1..2x....0...ACF
A209831 v x....x+1..0....x+1..2x....0...BCF*
A209745 u x....x+1..0....x+1..x+1...0...ABF*
A209746 v x....x+1..0....x+1..x+1...0...BFZ*
A209747 u x....x+1..0....1....1.....1...ADE*
A209748 v x....x+1..0....1....1.....1...DEO
A209749 u x....x+1..0....1....x.....1...ANN*
A209750 v x....x+1..0....1....x.....1...CNO
A209751 u x....x+1..0....1....2x....1...ABN*
A209752 v x....x+1..0....1....2x....1...BN
A209753 u x....x+1..0....1....x+1...1...AN*
A209754 v x....x+1..0....1....x+1...1...NT*
A209755 u x....x+1..0....x....1.....1...AFN
A209756 v x....x+1..0....x....1.....1...FNO*
A209759 u x....x+1..0....x....2x....1...ACF^
A209760 v x....x+1..0....x....2x....1...CF^*
A209761 u x....x+1..0....x.....x+1..1...ABNS*
A209762 v x....x+1..0....x.....x+1..1...BNS*
A209763 u x....x+1..0....2x....1....1...ABN*
A209764 v x....x+1..0....2x....1....1...BNN
A209765 u x....x+1..0....2x....x....1...ACF^*
A209766 v x....x+1..0....2x....x....1...CF^
A209767 u x....x+1..0....2x....x+1..1...AN*
A209768 v x....x+1..0....2x....x+1..1...N*
A209769 u x....x+1..0....x+1...1....1...AF*
A209770 v x....x+1..0....x+1...1....1...FN
A209771 u x....x+1..0....x+1...x....1...ABN*
A209772 v x....x+1..0....x+1...x....1...BN*
A209773 u x....x+1..0....x+1...2x...1...AF
A209774 v x....x+1..0....x+1...2x...1...FN*
A209775 u x....x+1..0....x+1...x+1..1...AB*
A209776 v x....x+1..0....x+1...x+1..1...BC*
A210033 u 1....1....1....1.....x....1...BCN
A210034 v 1....1....1....1.....x....1...BCDFN
A210035 u 1....1....1....1.....2x...1...BBF
A210036 v 1....1....1....1.....2x...1...BBFF
A210037 u 1....1....1....1.....x+1..1...BCFFN
A210038 v 1....1....1....1.....x+1..1...BCFFN
A210039 u 1....1....1....x.....1....1...BCOT
A210040 v 1....1....1....x.....1....1...BCEN
A210042 u 1....1....1....x.....x....1...BCDEOT*
A124927 v 1....1....1....x.....x....1...BCDET*
A210041 u 1....1....1....x.....2x...1...BFO
A209758 v 1....1....1....x.....2x...1...BCFO
A210187 u 1....1....1....x.....x+1..1...DTF*
A210188 v 1....1....1....x.....x+1..1...DNF*
A210189 u 1....1....1....2x....1....1...BT
A210190 v 1....1....1....2x....1....1...BN
A210191 u 1....1....1....2x....x....1...CO*
A210192 v 1....1....1....2x....x....1...CCO*
A210193 u 1....1....1....2x....x+1..1...CPT
A210194 v 1....1....1....2x....x+1..1...CN
A210195 u 1....1....1....2x....2x...1...BOPT*
A210196 v 1....1....1....2x....2x...1...BCC*
A210197 u 1....1....1....x+1...1....1...BCOT
A210198 v 1....1....1....x+1...1....1...BCEN
A210199 u 1....1....1....x+1...x....1...DFT
A210200 v 1....1....1....x+1...x....1...DFO*
A210201 u 1....1....1....x+1...2x...1...BFP
A210202 v 1....1....1....x+1...2x...1...BF
A210203 u 1....1....1....x+1...x+1..1...BDOP
A210204 v 1....1....1....x+1...x+1..1...BCDN*
A210211 u x....1....1....1.....2x...1...BCFN
A210212 v x....1....1....1.....2x...1...BFN
A210213 u x....1....1....1.....x+1..1...CFFN
A210214 v x....1....1....1.....x+1..1...CFFO
A210215 u x....1....1....x.....x....1...BCDFT^
A210216 v x....1....1....x.....x....1...BCFO^
A210217 u x....1....1....x.....2x...1...CDF^
A210218 v x....1....1....x.....2x...1...BCF^
A210219 u x....1....1....x.....x+1..1...CNSTF*
A210220 v x....1....1....x.....x+1..1...FNNT*
A104698 u x....1....1....2x......1..1...CENS*
A210220 v x....1....1....2x....x+1..1...DNNT*
A210223 u x....1....1....2x....x....1...CD^
A210224 v x....1....1....2x....x....1...CO^
A210225 u x....1....1....2x....x+1..1...CNP
A210226 v x....1....1....2x....x+1..1...NOT
A210227 u x....1....1....2x....2x...1...CDP^
A210228 v x....1....1....2x....2x...1...C^
A210229 u x....1....1....x+1...1....1...CFNN
A210230 v x....1....1....x+1...1....1...CCN
A210231 u x....1....1....x+1...x....1...CNT
A210232 v x....1....1....x+1...x....1...NN*
A210233 u x....1....1....x+1...2x...1...CNP
A210234 v x....1....1....x+1...2x...1...BN
A210235 u x....1....1....x+1...x+1..1...CCFPT*
A210236 v x....1....1....x+1...x+1..1...CFN*
A124927 u x....x....1....1.....1....1...BCDEET*
A210042 v x....1....1....x+1...x+1..1...BDEOT*
A210216 u x....x....1....1.....x....1...BCFO^
A210215 v x....x....1....1.....x....1...BCDFT^
A210549 u x....x....1....1.....2x...1...BCF^
A210550 v x....x....1....1.....2x...1...BDF^
A172431 u x....x....1....1.....x+1..1...CEFN*
A210551 v x....x....1....1.....x+1..1...CFOT*
A210552 u x....x....1....x.....1....1...BBCFNO
A210553 v x....x....1....x.....1....1...BNNFB
A208341 u x....x....1....x.....x+1..1...BCFFN
A210554 v x....x....1....x.....x+1..1...BNFFT
A210555 u x....x....1....2x....1....1...BCNN
A210556 v x....x....1....2x....1....1...BENP
A210557 u x....x....1....2x....x+1..1...CNP
A210558 v x....x....1....2x....x+1..1...N
A210559 u x....x....1....x+1...1....1...CEF
A210560 v x....x....1....x+1...1....1...OFNS
A210561 u x....x....1....x+1...x....1...BCNP^
A210562 v x....x....1....x+1...x....1...BDP*^
A210563 u x....x....1....x+1...2x...1...CFP^
A210564 v x....x....1....x+1...2x...1...DF^
A013609 u x....x....1....x+1...x+1..1...BCEPT*
A209757 v x....x....1....x+1...x+1..1...BCOS*
A209819 u x....2x...1....x+1...x....1...CFN^
A209820 v x....2x...1....x+1...x....1...DF^
A209996 u x....2x...1....x+1...2x...1...CP^
A209998 v x....2x...1....x+1...2x...1...DP^
A209999 u x....x+1..1....1.....x+1..1...FN*
A210287 v x....x+1..1....1.....x+1..1...CFT*
A210565 u x....x+1..1....x.....1....1...FNT*
A210595 v x....x+1..1....x.....1....1...FNNT
A210598 u x....x+1..1....x+1...2x...1...FN*
A210599 v x....x+1..1....x+1...2x...1...FN
A210600 u x....x+1..1....x+1...x+1..1...BF*
A210601 v x....x+1..1....x+1...x+1..1...BF*
A210597 u 2x...1....1....x+1...1....1...BF
A210601 v 2x...1....1....x+1...1....1...BFN*
A210603 u 2x...1....1....x+1...x+1..1...BF
A210738 v 2x...1....1....x+1...x+1..1...CBF*
A210739 u 2x...x....1....x+1...x....1...CF^
A210740 v 2x...x....1....x+1...x....1...DF*^
A210741 u 2x...x....1....x+1...x+1..1...BCFO
A210742 v 2x...x....1....x+1...x+1..1...CFO*
A210743 u 2x...x+1..1....x+1...1....1...F
A210744 v 2x...x+1..1....x+1...1....1...FN
A210747 u 2x...x+1..1....x+1...x+1..1...FF
A210748 v 2x...x+1..1....x+1...x+1..1...CFF*
A210749 u x+1..1....1....x+1...2x...1...BCF
A210750 v x+1..1....1....x+1...2x...1...BF
A210751 u x+1..x....1....x+1...2x...1...FNT
A210752 v x+1..x....1....x+1...2x...1...FN
A210753 u x+1..x....1....x+1...x+1..1...BNZ*
A210754 v x+1..x....1....x+1...x+1..1...BCT*
A210755 u x+1..2x...1....x+1...x+1..1...N*
A210756 v x+1..2x...1....x+1...x+1..1...CT*
A210789 u 1....x....0....x+2...x-1..0...CFFN
A210790 v 1....x....0....x+2...x-1..0...CEFF
A210791 u 1....x....0....x-1...x+2..0...CFNP
A210792 v 1....x....0....x-1...x+2..0...CF
A210793 u 1....x+1..0....x+2...x-1..0...CFNP
A210794 v 1....x+1..0....x+2...x-1..0...FPP
A210795 u 1....x....1....x+2...x-1..0...FN
A210796 v 1....x....1....x+2...x-1..0...FO
A210797 u 1....x....0....x+2...x-1..1...CF
A210798 v 1....x....0....x+2...x-1..1...F
A210799 u 1....x+1..1....x+2...x-1..0...FN
A210800 v 1....x+1..1....x+2...x-1..0...F
A210801 u 1....x+1..1....x+2...x-1..1...FN
A210802 v 1....x+1..1....x+2...x-1..1...F
A210803 u 1....x....0....x-1...x+3..0...F*
A210804 v 1....x....0....x-1...x+3..0...F*
A210805 u 1....x....0....x+2...x-1.-1...CFFN
A210806 v 1....x....0....x+2...x-1.-1...FF
A210858 u 1....x....0....x+n...x....0...CFT*
A210859 v 1....x....0....x+n...x....0...FN*
A210860 u 1....x+1..0....x+n...x....0...F
A210861 v 1....x+1..0....x+n...x....0...F*
A210862 u 1....x....1....x+n-1.x....0...FN
A210863 v 1....x....1....x+n-1.x....0...FS
A210864 u 1....x....1....x+n...x....0...FN
A210865 v 1....x....1....x+n...x....0...FT
A210866 u 1....x....0....x+n...x...-x...CFT
A210867 v 1....x....0....x+n...x...-x...FN
A210868 u 1....x....0....x+1...x-1..0...BCFN
A210869 v 1....x....0....x+1...x-1..0...BBCFNZ
A210870 u 1....x....0....x+1...x-1..1...CFFN
A210871 v 1....x....0....x+1...x-1..1...CFF
A210872 u x....1...-1....x.....x....1...BDFZ^
A210873 v x....1...-1....x.....x....1...BCFN^
A210876 u x....1....1....x.....x....x...BCCF^
A210877 v x....1....1....x.....x....x...BDFNZ^
A210878 u x....2x...0....x+1...x....1...DFZ^
A210879 v x....2x...0....x+1...x....1...FC*^
Some of these triangles have irregular row lengths, making it difficult to retrieve individual rows/columns/diagonals without actually computing the recurrence. - Georg Fischer, Sep 04 2021

Examples

			First five rows:
1
1...1
1...3...1
1...5...4...1
1...7...9...5...1
First five polynomials u(n,x):
1
1 + x
1 + 3x + x^2
1 + 5x + 4x^2 + x^3
1 + 7x + 9x^2 + 5x^3 + x^4
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A208510 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A029653 *)
  • Python
    from sympy import Poly
    from sympy.abc import x
    def u(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x)
    def v(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x) + 1
    def a(n): return Poly(u(n, x), x).all_coeffs()[::-1]
    for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 27 2017

Formula

u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Also, u(n,x)=(x+1)*u(n-1,x)+x for n>2, with u(n,2)=x+1.

Extensions

Corrected by Philippe Deléham, Apr 10 2012
Corrections and additions by Clark Kimberling, May 09 2012
Corrections in the overview by Georg Fischer, Sep 04 2021

A049600 Array T read by diagonals; T(i,j) is the number of paths from (0,0) to (i,j) consisting of nonvertical segments (x(k),y(k))-to-(x(k+1),y(k+1)) such that 0 = x(1) < x(2) < ... < x(n-1) < x(n)=i, 0 = y(1) <= y(2) <= ... <= y(n-1) <= y(n)=j, for i >= 0, j >= 0.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 3, 4, 0, 1, 4, 8, 8, 0, 1, 5, 13, 20, 16, 0, 1, 6, 19, 38, 48, 32, 0, 1, 7, 26, 63, 104, 112, 64, 0, 1, 8, 34, 96, 192, 272, 256, 128, 0, 1, 9, 43, 138, 321, 552, 688, 576, 256, 0, 1, 10, 53, 190, 501, 1002, 1520, 1696, 1280, 512
Offset: 0

Views

Author

Keywords

Comments

Essentially array A059576 divided by sequence A011782.
[Hetyei] calls a variant of this array (omitting the initial row of zeros) the asymmetric Delannoy numbers and shows how they arise in certain lattice path enumeration problems and a face enumeration problem associated to Jacobi polynomials. - Peter Bala, Oct 29 2008
Essentially triangle in A208341. - Philippe Deléham, Mar 23 2012
T(n+k,n) is the dot product of a vector from the n-th row of Pascal's triangle A007318 with a vector created by the first n+1 values evaluated from the cycle index of symmetry group S(k). Example: T(4+3,4) = T(7,4) = {1,4,6,4,1}.{1,4,10,20,35} = 192. - Richard Turk, Sep 21 2017
The formula T(n,k) = Sum_{r=0..n-1} C(k+r,r)*C(n-1,r) (Paul D. Hanna, Oct 06 2006) counts the paths of the title by number, r, of interior vertices in the path. - David Callan, Nov 25 2021

Examples

			Diagonals (each starting on row 1): {0}; {0,1}; {0,1,2}; ...
Array begins:
    0     0     0     0     0     0     0     0     0     0     0 ...
    1     1     1     1     1     1     1     1     1     1     1 ...
    2     3     4     5     6     7     8     9    10    11    12 ...
    4     8    13    19    26    34    43    53    64    76    89 ...
    8    20    38    63    96   138   190   253   328   416   518 ...
   16    48   104   192   321   501   743  1059  1462  1966  2586 ...
   32   112   272   552  1002  1683  2668  4043  5908  8378 11584 ...
   64   256   688  1520  2972  5336  8989 14407 22180 33028 47818 ...
Triangle begins:
  0;
  0, 1;
  0, 1, 2;
  0, 1, 3,  4;
  0, 1, 4,  8,  8;
  0, 1, 5, 13, 20,  16;
  0, 1, 6, 19, 38,  48,  32;
  0, 1, 7, 26, 63, 104, 112, 64;
  ...
(1, 0, -1/2, 1/2, 0, 0, 0, ...) DELTA (0, 2, 0, 0, 0, ...) where DELTA is the operator defined in A084938 begins:
  1;
  1, 0;
  1, 2,  0;
  1, 3,  4,  0;
  1, 4,  8,  8,   0;
  1, 5, 13, 20,  16,   0;
  1, 6, 19, 38,  48,  32,  0;
  1, 7, 26, 63, 104, 112, 64, 0;
		

Crossrefs

Diagonal sums are even-indexed Fibonacci numbers. Alternating (+-) diagonal sums are signed Fibonacci numbers.
T(n, n-1) = A001850(n) (Delannoy numbers). T(n, n)=A047781. Cf. A035028, A055587.

Programs

  • Haskell
    a049600 n k = a049600_tabl !! n !! k
    a049600_row n = a049600_tabl !! n
    a049600_tabl = [0] : map (0 :) a208341_tabl
    -- Reinhard Zumkeller, Apr 15 2014
  • Maple
    A049600 := proc(n,k)
        add(binomial(k+j,j)*binomial(n-1,j),j=0..n-1) ;
    end proc: # R. J. Mathar, Oct 26 2015
  • Mathematica
    t[n_, k_] := Hypergeometric2F1[ n-k+1, 1-k, 1, -1] // Floor; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 09 2013 *)
    t[n_, k_] := Sum[LaguerreL[n-k, i, 0]* LaguerreL[k-i, i, 0], {i,0,k}] //Floor; Table[t[n,k], {n, 0, 16}, {k, -1, n}] (* Richard Turk, Sep 08 2017 *)
    T[n_, k_] := If[k == 0, 0, JacobiP[k - 1, 0, 1 - 2*k + n, 3]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Nov 25 2021 *)
  • PARI
    {A(i, j) = polcoeff( (x / (1 - 2*x)) * ((1 - x) / (1 - 2*x))^j + x * O(x^i), i)}; /* Michael Somos, Oct 01 2003 */
    
  • PARI
    T(n,k)=sum(j=0,n-1,binomial(k+j,j)*binomial(n-1,j)) \\ Paul D. Hanna, Oct 06 2006
    

Formula

T(n,k) = Sum_{j=0..n-1} C(k+j,j)*C(n-1,j). - Paul D. Hanna, Oct 06 2006
T(i,j) = 2*T(i-1,j) + T(i,j-1) - T(i-1,j-1) with T(0,0)=1 and T(i,j)=0 if one of i,j<0. - Theodore Kolokolnikov, Jul 05 2010
O.g.f.: t*x/(1 - (2*t+1)*x + t*x^2) = t*x + (t + 2*t^2)*x^2 + (t + 3*t^2 + 4*t^3)*x^3 + .... Taking the row reverse of this triangle (with an additional column of 1's) gives A055587. - Peter Bala, Sep 10 2012
T(i,0) = 2^(i-1) and for j>0, T(i,j) = T(i,j-1) + Sum_{k=0..i-1} T(k,j). - Glen Whitney, Aug 17 2021
T(n, k) = JacobiP(k - 1, 0, 1 - 2*k + n, 3) for k >= 1. - Peter Luschny, Nov 25 2021

A160232 Array read by antidiagonals: row n has g.f. ((1-x)/(1-2x))^n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 5, 4, 1, 4, 9, 12, 8, 1, 5, 14, 25, 28, 16, 1, 6, 20, 44, 66, 64, 32, 1, 7, 27, 70, 129, 168, 144, 64, 1, 8, 35, 104, 225, 360, 416, 320, 128, 1, 9, 44, 147, 363, 681, 968, 1008, 704, 256, 1, 10, 54, 200, 553, 1182, 1970, 2528, 2400, 1536, 512, 1, 11, 65
Offset: 1

Views

Author

N. J. A. Sloane, May 15 2010

Keywords

Comments

Suggested by a question from Phyllis Chinn (Humboldt State University).
As triangle, mirror image of A105306. - Philippe Deléham, Nov 01 2011
A160232 is jointly generated with A208341 as a triangular array of coefficients of polynomials u(n,x): initially, u(1,x)=v(1,x)=1; for n > 1, u(n,x) = u(n-1,x) + x*v(n-1)x and v(n,x) = u(n-1,x) + 2x*v(n-1,x). See the Mathematica section. - Clark Kimberling, Feb 25 2012
Subtriangle of the triangle T(n,k) given by (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 08 2012

Examples

			Array begins:
  1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, ...
  1, 2, 5, 12, 28, 64, 144, 320, 704, 1536, 3328, 7168, 15360, 32768, 69632, 147456, 311296, 655360, 1376256, ...
  1, 3, 9, 25, 66, 168, 416, 1008, 2400, 5632, 13056, 29952, 68096, 153600, 344064, 765952, 1695744, 3735552, ...
  1, 4, 14, 44, 129, 360, 968, 2528, 6448, 16128, 39680, 96256, 230656, 546816, 1284096, 2990080, 6909952, ...
  1, 5, 20, 70, 225, 681, 1970, 5500, 14920, 39520, 102592, 261760, 657920, 1632000, 4001280, 9708544, ...
  1, 6, 27, 104, 363, 1182, 3653, 10836, 31092, 86784, 236640, 632448, 1661056, 4296192, 10961664, 27630592, ...
From _Clark Kimberling_, Feb 25 2012: (Start)
As a triangle (see Comments):
  1;
  1,  1;
  1,  2,  2;
  1,  3,  5,  4;
  1,  4,  9, 12,  8;  (End)
From _Philippe Deléham_, Mar 08 2012: (Start)
(1, 0, 0, 0, 0, ...) DELTA (0, 1, 1, 0, 0, 0, ...) begins:
  1;
  1,  0;
  1,  1,  0;
  1,  2,  2,  0;
  1,  3,  5,  4,  0;
  1,  4,  9, 12,  8,  0;
  1,  5, 14, 25, 28, 16,  0; (End)
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 13;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + 2*x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A160232 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A208341 *)
    (* Clark Kimberling, Feb 25 2012 *)

Formula

From Philippe Deléham, Mar 08 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1), T(0,0) = 1, T(1,0) = 1, T(1,1) = 0, T(n,k) = 0 if k < 0 or if k > n.
G.f.: (1-2*y*x)/(1-2*y*x-x+y*x^2).
Sum_{k=0..n, n>0} T(n,k)*x^k = A000012(n), A001519(n), A052984(n-1) for x = 0, 1, 2 respectively. (End)

A106195 Riordan array (1/(1-2*x), x*(1-x)/(1-2*x)).

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 8, 8, 4, 1, 16, 20, 13, 5, 1, 32, 48, 38, 19, 6, 1, 64, 112, 104, 63, 26, 7, 1, 128, 256, 272, 192, 96, 34, 8, 1, 256, 576, 688, 552, 321, 138, 43, 9, 1, 512, 1280, 1696, 1520, 1002, 501, 190, 53, 10, 1, 1024, 2816, 4096, 4048, 2972, 1683, 743, 253, 64, 11
Offset: 0

Views

Author

Gary W. Adamson, Apr 24 2005; Paul Barry, May 21 2006

Keywords

Comments

Extract antidiagonals from the product P * A, where P = the infinite lower triangular Pascal's triangle matrix; and A = the Pascal's triangle array:
1, 1, 1, 1, ...
1, 2, 3, 4, ...
1, 3, 6, 10, ...
1, 4, 10, 20, ...
...
Row sums are Fibonacci(2n+2). Diagonal sums are A006054(n+2). Row sums of inverse are A105523. Product of Pascal triangle A007318 and A046854.
A106195 with an appended column of ones = A055587. Alternatively, k-th column (k=0, 1, 2) is the binomial transform of bin(n, k).
T(n,k) is the number of ideals in the fence Z(2n) having k elements of rank 1. - Emanuele Munarini, Mar 22 2011
Subtriangle of the triangle given by (0, 2, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 22 2012

Examples

			Triangle begins
   1;
   2,   1;
   4,   3,   1;
   8,   8,   4,  1;
  16,  20,  13,  5,  1;
  32,  48,  38, 19,  6, 1;
  64, 112, 104, 63, 26, 7, 1;
(0, 2, 0, 0, 0, ...) DELTA (1, 0, -1/2, 1/2, 0, 0, ...) begins :
  1;
  0,  1;
  0,  2,   1;
  0,  4,   3,   1;
  0,  8,   8,   4,  1;
  0, 16,  20,  13,  5,  1;
  0, 32,  48,  38, 19,  6, 1;
  0, 64, 112, 104, 63, 26, 7, 1. - _Philippe Deléham_, Mar 22 2012
		

Crossrefs

Column 0 = 1, 2, 4...; (binomial transform of 1, 1, 1...); column 1 = 1, 3, 8, 20...(binomial transform of 1, 2, 3...); column 2: 1, 4, 13, 38...= binomial transform of bin(n, 2): 1, 3, 6...

Programs

  • Haskell
    a106195 n k = a106195_tabl !! n !! k
    a106195_row n = a106195_tabl !! n
    a106195_tabl = [1] : [2, 1] : f [1] [2, 1] where
       f us vs = ws : f vs ws where
         ws = zipWith (-) (zipWith (+) ([0] ++ vs) (map (* 2) vs ++ [0]))
                          ([0] ++ us ++ [0])
    -- Reinhard Zumkeller, Dec 16 2013
    
  • Magma
    [ (&+[Binomial(n-k, n-j)*Binomial(j, k): j in [0..n]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 15 2020
    
  • Maple
    T := (n, k) -> hypergeom([-n+k, k+1],[1],-1):
    seq(lprint(seq(simplify(T(n, k)), k=0..n)), n=0..7); # Peter Luschny, May 20 2015
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + v[n - 1, x]
    v[n_, x_] := u[n - 1, x] + (x + 1) v[n - 1, x]
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A207605 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A106195 *)
    (* Clark Kimberling, Feb 19 2012 *)
    Table[Hypergeometric2F1[-n+k, k+1, 1, -1], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 15 2020 *)
  • Maxima
    create_list(sum(binomial(i,k)*binomial(n-k,n-i),i,0,n),n,0,8,k,0,n); /* Emanuele Munarini, Mar 22 2011 */
    
  • Python
    from sympy import Poly, symbols
    x = symbols('x')
    def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x)
    def v(n, x): return 1 if n==1 else u(n - 1, x) + (x + 1)*v(n - 1, x)
    def a(n): return Poly(v(n, x), x).all_coeffs()[::-1]
    for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017
    
  • Python
    from mpmath import hyp2f1, nprint
    def T(n, k): return hyp2f1(k - n, k + 1, 1, -1)
    for n in range(13): nprint([int(T(n, k)) for k in range(n + 1)]) # Indranil Ghosh, May 28 2017, after formula from Peter Luschny
    
  • Sage
    [[sum(binomial(n-k,n-j)*binomial(j,k) for j in (0..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 15 2020

Formula

T(n,k) = Sum_{j=0..n} C(n-k,n-j)*C(j,k).
From Emanuele Munarini, Mar 22 2011: (Start)
T(n,k) = Sum_{i=0..n-k} C(k,i)*C(n-k,i)*2^(n-k-i).
T(n,k) = Sum_{i=0..n-k} C(k,i)*C(n-i,k)*(-1)^i*2^(n-k-i).
Recurrence: T(n+2,k+1) = 2*T(n+1,k+1)+T(n+1,k)-T(n,k). (End)
From Clark Kimberling, Feb 19 2012: (Start)
Define u(n,x) = u(n-1,x)+v(n-1,x), v(n,x) = u(n-1,x)+(x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1. Then v matches A106195 and u matches A207605. (End)
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k-1). - Philippe Deléham, Mar 22 2012
T(n+k,k) is the coefficient of x^n y^k in 1/(1-2x-y+xy). - Ira M. Gessel, Oct 30 2012
T(n, k) = A208341(n+1,n-k+1), k = 0..n. - Reinhard Zumkeller, Dec 16 2013
T(n, k) = hypergeometric_2F1(-n+k, k+1, 1 , -1). - Peter Luschny, May 20 2015
G.f. 1/(1-2*x+x^2*y-x*y). - R. J. Mathar, Aug 11 2015
Sum_{k=0..n} T(n, k) = Fibonacci(2*n+2) = A088305(n+1). - G. C. Greubel, Mar 15 2020

Extensions

Edited by N. J. A. Sloane, Apr 09 2007, merging two sequences submitted independently by Gary W. Adamson and Paul Barry

A121462 Triangle read by rows: T(n,k) is the number of nondecreasing Dyck paths of semilength n, having pyramid weight k (1 <= k <= n).

Original entry on oeis.org

1, 0, 2, 0, 1, 4, 0, 1, 4, 8, 0, 1, 5, 12, 16, 0, 1, 6, 18, 32, 32, 0, 1, 7, 25, 56, 80, 64, 0, 1, 8, 33, 88, 160, 192, 128, 0, 1, 9, 42, 129, 280, 432, 448, 256, 0, 1, 10, 52, 180, 450, 832, 1120, 1024, 512, 0, 1, 11, 63, 242, 681, 1452, 2352, 2816, 2304, 1024, 0, 1, 12, 75, 316
Offset: 1

Views

Author

Emeric Deutsch, Jul 31 2006

Keywords

Comments

A pyramid in a Dyck word (path) is a factor of the form U^h D^h, where U=(1,1), D=(1,-1) and h is the height of the pyramid. A pyramid in a Dyck word w is maximal if, as a factor in w, it is not immediately preceded by a u and immediately followed by a d. The pyramid weight of a Dyck path (word) is the sum of the heights of its maximal pyramids.
Row sums are the odd-subscripted Fibonacci numbers (A001519). T(n,n)=2^(n-1). Sum_{k=1..n} k*T(n,k) = A030267(n).
Mirror image of triangle in A153342. - Philippe Deléham, Dec 31 2008
Essentially triangle given by (0,1/2,1/2,0,0,0,0,0,0,0,...) DELTA (2,0,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 30 2011
A121462 is jointly generated with A208341 as an array of coefficients of polynomials u(n,x): initially, u(1,x)=v(1,x)=1; for n > 1, u(n,x) = x*u(n-1,x) + x*v(n-1) and v(n,x) = x*u(n-1,x) + (x+1)*v(n-1,x). See the Mathematica section. - Clark Kimberling, Mar 11 2012

Examples

			T(4,3)=4 because we have (UD)U(UD)(UD)D, U(UD)(UD)(UD)D, U(UD)(UUDD)D and U(UUDD)(UD)D, where U=(1,1) and D=(1,-1) (the maximal pyramids are shown between parentheses).
Triangle starts:
  1;
  0,  2;
  0,  1,  4;
  0,  1,  4,  8;
  0,  1,  5, 12, 16;
  0,  1,  6, 18, 32, 32;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if n=1 and k=1 then 1 elif k=1 then 0 elif k<=n then sum(binomial(k-1,j)*binomial(n-k-1+j,j-1),j=0..k-1) else 0 fi end: for n from 1 to 13 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := x*u[n - 1, x] + (x + 1) v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A121462 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A208341 *)
    (* Clark Kimberling, Mar 11 2012 *)

Formula

T(n,k) = Sum_{j=0..k-1} binomial(k-1,j)*binomial(n-k-1+j,j-1) for 2 <= k <= n; T(1,1)=1; T(n,1)=0 for n >= 2.
G.f.: G = G(t,z) = tz(1-z)/(1-2tz-z+tz^2).
T(n+1,k+1) = A062110(n,k)*2^(2*k-n). - Philippe Deléham, Aug 01 2006

A100631 Triangle read by rows: T(n,k) = 2*(T(n-1,k-1) - T(n-2,k-1) + T(n-1,k)) for 0 < k < n, T(n,0) = T(n,n) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 12, 8, 1, 1, 16, 32, 32, 16, 1, 1, 32, 80, 104, 80, 32, 1, 1, 64, 192, 304, 304, 192, 64, 1, 1, 128, 448, 832, 1008, 832, 448, 128, 1, 1, 256, 1024, 2176, 3072, 3072, 2176, 1024, 256, 1, 1, 512, 2304, 5504, 8832, 10272, 8832, 5504, 2304, 512, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 03 2004

Keywords

Comments

From Petros Hadjicostas, Feb 09 2021: (Start)
The rectangular version (R(n,k): n,k >= 0) of this symmetric triangular array (T(n,k): 0 <= k <= n) is given by R(n,k) = T(n+k,k) for n,k >= 0. Conversely, T(n,k) = R(n-k, k) for 0 <= k <= n.
Note that [o.g.f of R](x,y) = [o.g.f. of T](x, y/x) and [o.g.f of T](x,y) = [o.g.f of R](x,x*y). (End)
From Petros Hadjicostas, Feb 10 2021: (Start)
All the conjectures below are true because one has to prove only one of them, and the rest follow from the proved one.
As Peter Luschny pointed out, one has to show only that the function S(n,k) = 2^n*hypergeom([-k + 1, n], [1], -1) satisfies the recurrence S(n,k) = 2*(S(n,k-1) - S(n-1,k-1) + S(n-1,k)) for n, k > 0 and the initial conditions S(n,0) = S(0,n) = 1 for n >= 0.
This is quite easy to achieve because S(n,k) = 2^n*Sum_{s=0}^{k-1} binomial(k-1,s)*binomial(n+s-1,s) for n >= 0 and k >= 1. The proof of the recurrence relies on the identity binomial(m,n) = binomial(m-1, n) + binomial(m-1,n-1).
Note that without the 2^n in the formula R(n,k) = 2^n*hypergeom([-k + 1, n], [1], -1), we essentially get array A049600.
In addition, note that without the 2^(n-k-1) in the formula T(n,k+1) = 2^(n-k-1)*hypergeom([-k, n-k+1], [1], -1), we essentially get A208341 (without the first column and the main diagonal of T). (End)

Examples

			From _Petros Hadjicostas_, Feb 09 2021: (Start)
Triangle T(n,k) (with rows n >= 0 and columns 0 <= k <= n) begins:
  1,
  1,   1,
  1,   2,    1,
  1,   4,    4,    1,
  1,   8,   12,    8,    1,
  1,  16,   32,   32,   16,    1,
  1,  32,   80,  104,   80,   32,    1,
  1,  64,  192,  304,  304,  192,   64,    1,
  1, 128,  448,  832, 1008,  832,  448,  128,   1,
  1, 256, 1024, 2176, 3072, 3072, 2176, 1024, 256, 1,
  ...
Rectangular array R(n,k) (with rows n >= 0 and columns k >= 0) begins:
  1,   1,    1,    1,     1,     1,      1,       1, ...
  1,   2,    4,    8,    16,    32,     64,     128, ...
  1,   4,   12,   32,    80,   192,    448,    1024, ...
  1,   8,   32,  104,   304,   832,   2176,    5504, ...
  1,  16,   80,  304,  1008,  3072,   8832,   24320, ...
  1,  32,  192,  832,  3072, 10272,  32064,   95104, ...
  1,  64,  448, 2176,  8832, 32064, 107712,  341504, ...
  1, 128, 1024, 5504, 24320, 95104, 341504, 1150592, ...
  ... (End)
		

Crossrefs

Programs

Formula

From Petros Hadjicostas, Feb 09 2021: (Start)
Formulas for the triangular array (T(n,k): 0 <= k <= n):
T(n,k) = T(n,n-k) for 0 <= k <= n.
Sum_{k=0..n} T(n,k) = A087161(n+1).
T(n,1) = T(n,n-1) = 2^(n-1) = A000079(n-1) for n >= 1.
T(n,2) = T(n,n-2) = (n-1)*2^(n-2) = A001787(n-1) for n >= 2.
T(n,3) = T(n,n-3) = (n^2-n-4)*2^(n-4) = A100312(n-3) for n >= 3.
T(n,floor(n/2)) = T(n,ceiling(n/2)) = A341344(n).
Bivariate o.g.f.: Sum_{n,k >= 0} T(n,k)*x^n*y^k = (3*x^2*y - 2*x*y - 2*x + 1)/((1 - x)*(-x*y + 1)*(2*x^2*y - 2*x*y - 2*x + 1)).
Conjecture based on Peter Luschny's formulas in other sequences: T(n,k) = 2^(n-k)*hypergeom([-k + 1, n-k], [1], -1) = 2^k*hypergeom([-(n-k) + 1, k], [1], -1).
Formulas for the rectangular array (R(n,k): n,k >= 0):
R(n,k) = 2*(R(n,k-1) - R(n-1,k-1) + R(n-1,k)) for n,k > 0 with R(n,0) = R(0,n) = 1 for n >= 0.
R(n,k) = R(k, n) for n,k >= 0.
R(1,n) = R(n,1) = 2^n = A000079(n).
R(2,n) = R(n,2) = (n+1)*2^n = A001787(n+1).
R(3,n) = R(n,3) = (n^2+5*n+2)*2^(n-1) = A100312(n).
R(n,n) = A152254(n-1) = 2*A084773(n-1) for n >= 1.
Bivariate o.g.f.: Sum_{n,k >= 0} R(n,k)*x^n*y^k = (3*x*y - 2*x - 2*y - 1)/((1 - x)*(1 - y)*(2*x*y - 2*x - 2*y - 1)).
Conjecture based on Peter Luschny's formulas in other sequences: R(n,k) = 2^n*hypergeom([-k + 1, n], [1], -1) = 2^k*hypergeom([-n + 1, k], [1], -1). (End)
From Petros Hadjicostas, Feb 10 2021: (Start)
The above conjecture is true (see the comments).
R(n,k) = 2^k*Sum_{s=0}^{n-1} binomial(n-1,s)*binomial(k+s-1,s) = 2^n*Sum_{s=0}^{k-1} binomial(k-1,s)*binomial(n+s-1,s) for n, k >= 1.
To get two binomial formulas for T(n,k), use the equation T(n,k) = R(n-k, k) for 1 <= k <= n and the above formulas for R(n,k). (End)

Extensions

Offset changed by Petros Hadjicostas, Feb 09 2021

A210555 Triangle of coefficients of polynomials u(n,x) jointly generated with A210556; see the Formula section.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 1, 4, 7, 8, 1, 5, 10, 17, 16, 1, 6, 13, 28, 39, 32, 1, 7, 16, 41, 70, 89, 64, 1, 8, 19, 56, 109, 176, 199, 128, 1, 9, 22, 73, 156, 297, 426, 441, 256, 1, 10, 25, 92, 211, 456, 765, 1020, 967, 512, 1, 11, 28, 113, 274, 657, 1236, 1953, 2398
Offset: 1

Views

Author

Clark Kimberling, Mar 22 2012

Keywords

Comments

For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
1...2
1...3...4
1...4...7....8
1...5...10...17...16
First three polynomials u(n,x): 1, 1 + 2x, 1 + 3x + 4x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
    v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A208341 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A210554 *)

Formula

u(n,x)=x*u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=2x*u(n-1,x)+v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Showing 1-8 of 8 results.