cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A049600 Array T read by diagonals; T(i,j) is the number of paths from (0,0) to (i,j) consisting of nonvertical segments (x(k),y(k))-to-(x(k+1),y(k+1)) such that 0 = x(1) < x(2) < ... < x(n-1) < x(n)=i, 0 = y(1) <= y(2) <= ... <= y(n-1) <= y(n)=j, for i >= 0, j >= 0.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 3, 4, 0, 1, 4, 8, 8, 0, 1, 5, 13, 20, 16, 0, 1, 6, 19, 38, 48, 32, 0, 1, 7, 26, 63, 104, 112, 64, 0, 1, 8, 34, 96, 192, 272, 256, 128, 0, 1, 9, 43, 138, 321, 552, 688, 576, 256, 0, 1, 10, 53, 190, 501, 1002, 1520, 1696, 1280, 512
Offset: 0

Views

Author

Keywords

Comments

Essentially array A059576 divided by sequence A011782.
[Hetyei] calls a variant of this array (omitting the initial row of zeros) the asymmetric Delannoy numbers and shows how they arise in certain lattice path enumeration problems and a face enumeration problem associated to Jacobi polynomials. - Peter Bala, Oct 29 2008
Essentially triangle in A208341. - Philippe Deléham, Mar 23 2012
T(n+k,n) is the dot product of a vector from the n-th row of Pascal's triangle A007318 with a vector created by the first n+1 values evaluated from the cycle index of symmetry group S(k). Example: T(4+3,4) = T(7,4) = {1,4,6,4,1}.{1,4,10,20,35} = 192. - Richard Turk, Sep 21 2017
The formula T(n,k) = Sum_{r=0..n-1} C(k+r,r)*C(n-1,r) (Paul D. Hanna, Oct 06 2006) counts the paths of the title by number, r, of interior vertices in the path. - David Callan, Nov 25 2021

Examples

			Diagonals (each starting on row 1): {0}; {0,1}; {0,1,2}; ...
Array begins:
    0     0     0     0     0     0     0     0     0     0     0 ...
    1     1     1     1     1     1     1     1     1     1     1 ...
    2     3     4     5     6     7     8     9    10    11    12 ...
    4     8    13    19    26    34    43    53    64    76    89 ...
    8    20    38    63    96   138   190   253   328   416   518 ...
   16    48   104   192   321   501   743  1059  1462  1966  2586 ...
   32   112   272   552  1002  1683  2668  4043  5908  8378 11584 ...
   64   256   688  1520  2972  5336  8989 14407 22180 33028 47818 ...
Triangle begins:
  0;
  0, 1;
  0, 1, 2;
  0, 1, 3,  4;
  0, 1, 4,  8,  8;
  0, 1, 5, 13, 20,  16;
  0, 1, 6, 19, 38,  48,  32;
  0, 1, 7, 26, 63, 104, 112, 64;
  ...
(1, 0, -1/2, 1/2, 0, 0, 0, ...) DELTA (0, 2, 0, 0, 0, ...) where DELTA is the operator defined in A084938 begins:
  1;
  1, 0;
  1, 2,  0;
  1, 3,  4,  0;
  1, 4,  8,  8,   0;
  1, 5, 13, 20,  16,   0;
  1, 6, 19, 38,  48,  32,  0;
  1, 7, 26, 63, 104, 112, 64, 0;
		

Crossrefs

Diagonal sums are even-indexed Fibonacci numbers. Alternating (+-) diagonal sums are signed Fibonacci numbers.
T(n, n-1) = A001850(n) (Delannoy numbers). T(n, n)=A047781. Cf. A035028, A055587.

Programs

  • Haskell
    a049600 n k = a049600_tabl !! n !! k
    a049600_row n = a049600_tabl !! n
    a049600_tabl = [0] : map (0 :) a208341_tabl
    -- Reinhard Zumkeller, Apr 15 2014
  • Maple
    A049600 := proc(n,k)
        add(binomial(k+j,j)*binomial(n-1,j),j=0..n-1) ;
    end proc: # R. J. Mathar, Oct 26 2015
  • Mathematica
    t[n_, k_] := Hypergeometric2F1[ n-k+1, 1-k, 1, -1] // Floor; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 09 2013 *)
    t[n_, k_] := Sum[LaguerreL[n-k, i, 0]* LaguerreL[k-i, i, 0], {i,0,k}] //Floor; Table[t[n,k], {n, 0, 16}, {k, -1, n}] (* Richard Turk, Sep 08 2017 *)
    T[n_, k_] := If[k == 0, 0, JacobiP[k - 1, 0, 1 - 2*k + n, 3]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Nov 25 2021 *)
  • PARI
    {A(i, j) = polcoeff( (x / (1 - 2*x)) * ((1 - x) / (1 - 2*x))^j + x * O(x^i), i)}; /* Michael Somos, Oct 01 2003 */
    
  • PARI
    T(n,k)=sum(j=0,n-1,binomial(k+j,j)*binomial(n-1,j)) \\ Paul D. Hanna, Oct 06 2006
    

Formula

T(n,k) = Sum_{j=0..n-1} C(k+j,j)*C(n-1,j). - Paul D. Hanna, Oct 06 2006
T(i,j) = 2*T(i-1,j) + T(i,j-1) - T(i-1,j-1) with T(0,0)=1 and T(i,j)=0 if one of i,j<0. - Theodore Kolokolnikov, Jul 05 2010
O.g.f.: t*x/(1 - (2*t+1)*x + t*x^2) = t*x + (t + 2*t^2)*x^2 + (t + 3*t^2 + 4*t^3)*x^3 + .... Taking the row reverse of this triangle (with an additional column of 1's) gives A055587. - Peter Bala, Sep 10 2012
T(i,0) = 2^(i-1) and for j>0, T(i,j) = T(i,j-1) + Sum_{k=0..i-1} T(k,j). - Glen Whitney, Aug 17 2021
T(n, k) = JacobiP(k - 1, 0, 1 - 2*k + n, 3) for k >= 1. - Peter Luschny, Nov 25 2021

A055588 a(n) = 3*a(n-1) - a(n-2) - 1 with a(0) = 1 and a(1) = 2.

Original entry on oeis.org

1, 2, 4, 9, 22, 56, 145, 378, 988, 2585, 6766, 17712, 46369, 121394, 317812, 832041, 2178310, 5702888, 14930353, 39088170, 102334156, 267914297, 701408734, 1836311904, 4807526977, 12586269026, 32951280100, 86267571273
Offset: 0

Views

Author

Wolfdieter Lang, May 30 2000; Barry E. Williams, Jun 04 2000

Keywords

Comments

Number of directed column-convex polyominoes with area n+2 and having two cells in the bottom row. - Emeric Deutsch, Jun 14 2001
a(n) is the length of the list generated by the substitution: 3->3, 4->(3,4,6), 6->(3,4,6,6): {3, 4}, {3, 3, 4, 6}, {3, 3, 3, 4, 6, 3, 4, 6, 6}, {3, 3, 3, 3, 4, 6, 3, 4, 6, 6, 3, 3, 4, 6, 3, 4, 6, 6, 3, 4, 6, 6}, etc. - Wouter Meeussen, Nov 23 2003
Equals row sums of triangle A144955. - Gary W. Adamson, Sep 27 2008
Equals the INVERT transform of A034943 and the INVERTi transform of A094790. - Gary W. Adamson, Apr 01 2011

Crossrefs

Partial sums of A001519.
Apart from the first term, same as A052925.

Programs

  • GAP
    List([0..40], n-> Fibonacci(2*n)+1 ); # G. C. Greubel, Jun 06 2019
  • Magma
    [Fibonacci(2*n)+1: n in [0..40]]; // Vincenzo Librandi, Sep 30 2017
    
  • Maple
    g:=z/(1-3*z+z^2): gser:=series(g, z=0, 43): seq(abs(coeff(gser, z, n)+1), n=0..27); # Zerinvary Lajos, Mar 22 2009
  • Mathematica
    Table[Fibonacci[2n] +1, {n, 0, 40}] (* or *) LinearRecurrence[{4, -4, 1}, {1, 2, 4}, 40] (* Vincenzo Librandi, Sep 30 2017 *)
  • PARI
    vector(40, n, n--; fibonacci(2*n)+1) \\ G. C. Greubel, Jun 06 2019
    
  • Sage
    [lucas_number1(n,3,1)+1 for n in range(40)] # Zerinvary Lajos, Jul 06 2008
    

Formula

a(n) = (((3 + sqrt(5))/2)^n - ((3 - sqrt(5))/2)^n)/sqrt(5) + 1.
a(n) = Sum_{m=0..n} A055587(n, m) = 1 + A001906(n).
G.f.: (1 - 2*x)/((1 - 3*x + x^2)*(1-x)).
From Paul Barry, Oct 07 2004: (Start)
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3);
a(n) = Sum_{k=0..floor(n/3)} binomial(n-k, 2*k)2^(n-3*k). (End)
From Paul Barry, Oct 26 2004: (Start)
a(n) = A001906(n) + 1.
a(n) = Sum_{k=0..n} Fibonacci(2*k+2)*(2*0^(n-k) - 1).
a(n) = A008346(2*n). (End)
a(n) = Sum_{k=0..2*n+1} ((-1)^(k+1))*Fibonacci(k). - Michel Lagneau, Feb 03 2014
E.g.f.: cosh(x) + sinh(x) + 2*exp(3*x/2)*sinh(sqrt(5)*x/2)/sqrt(5). - Stefano Spezia, May 14 2024
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/10) (A019827). - Amiram Eldar, Nov 28 2024

A106195 Riordan array (1/(1-2*x), x*(1-x)/(1-2*x)).

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 8, 8, 4, 1, 16, 20, 13, 5, 1, 32, 48, 38, 19, 6, 1, 64, 112, 104, 63, 26, 7, 1, 128, 256, 272, 192, 96, 34, 8, 1, 256, 576, 688, 552, 321, 138, 43, 9, 1, 512, 1280, 1696, 1520, 1002, 501, 190, 53, 10, 1, 1024, 2816, 4096, 4048, 2972, 1683, 743, 253, 64, 11
Offset: 0

Views

Author

Gary W. Adamson, Apr 24 2005; Paul Barry, May 21 2006

Keywords

Comments

Extract antidiagonals from the product P * A, where P = the infinite lower triangular Pascal's triangle matrix; and A = the Pascal's triangle array:
1, 1, 1, 1, ...
1, 2, 3, 4, ...
1, 3, 6, 10, ...
1, 4, 10, 20, ...
...
Row sums are Fibonacci(2n+2). Diagonal sums are A006054(n+2). Row sums of inverse are A105523. Product of Pascal triangle A007318 and A046854.
A106195 with an appended column of ones = A055587. Alternatively, k-th column (k=0, 1, 2) is the binomial transform of bin(n, k).
T(n,k) is the number of ideals in the fence Z(2n) having k elements of rank 1. - Emanuele Munarini, Mar 22 2011
Subtriangle of the triangle given by (0, 2, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 22 2012

Examples

			Triangle begins
   1;
   2,   1;
   4,   3,   1;
   8,   8,   4,  1;
  16,  20,  13,  5,  1;
  32,  48,  38, 19,  6, 1;
  64, 112, 104, 63, 26, 7, 1;
(0, 2, 0, 0, 0, ...) DELTA (1, 0, -1/2, 1/2, 0, 0, ...) begins :
  1;
  0,  1;
  0,  2,   1;
  0,  4,   3,   1;
  0,  8,   8,   4,  1;
  0, 16,  20,  13,  5,  1;
  0, 32,  48,  38, 19,  6, 1;
  0, 64, 112, 104, 63, 26, 7, 1. - _Philippe Deléham_, Mar 22 2012
		

Crossrefs

Column 0 = 1, 2, 4...; (binomial transform of 1, 1, 1...); column 1 = 1, 3, 8, 20...(binomial transform of 1, 2, 3...); column 2: 1, 4, 13, 38...= binomial transform of bin(n, 2): 1, 3, 6...

Programs

  • Haskell
    a106195 n k = a106195_tabl !! n !! k
    a106195_row n = a106195_tabl !! n
    a106195_tabl = [1] : [2, 1] : f [1] [2, 1] where
       f us vs = ws : f vs ws where
         ws = zipWith (-) (zipWith (+) ([0] ++ vs) (map (* 2) vs ++ [0]))
                          ([0] ++ us ++ [0])
    -- Reinhard Zumkeller, Dec 16 2013
    
  • Magma
    [ (&+[Binomial(n-k, n-j)*Binomial(j, k): j in [0..n]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 15 2020
    
  • Maple
    T := (n, k) -> hypergeom([-n+k, k+1],[1],-1):
    seq(lprint(seq(simplify(T(n, k)), k=0..n)), n=0..7); # Peter Luschny, May 20 2015
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + v[n - 1, x]
    v[n_, x_] := u[n - 1, x] + (x + 1) v[n - 1, x]
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A207605 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A106195 *)
    (* Clark Kimberling, Feb 19 2012 *)
    Table[Hypergeometric2F1[-n+k, k+1, 1, -1], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 15 2020 *)
  • Maxima
    create_list(sum(binomial(i,k)*binomial(n-k,n-i),i,0,n),n,0,8,k,0,n); /* Emanuele Munarini, Mar 22 2011 */
    
  • Python
    from sympy import Poly, symbols
    x = symbols('x')
    def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x)
    def v(n, x): return 1 if n==1 else u(n - 1, x) + (x + 1)*v(n - 1, x)
    def a(n): return Poly(v(n, x), x).all_coeffs()[::-1]
    for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017
    
  • Python
    from mpmath import hyp2f1, nprint
    def T(n, k): return hyp2f1(k - n, k + 1, 1, -1)
    for n in range(13): nprint([int(T(n, k)) for k in range(n + 1)]) # Indranil Ghosh, May 28 2017, after formula from Peter Luschny
    
  • Sage
    [[sum(binomial(n-k,n-j)*binomial(j,k) for j in (0..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 15 2020

Formula

T(n,k) = Sum_{j=0..n} C(n-k,n-j)*C(j,k).
From Emanuele Munarini, Mar 22 2011: (Start)
T(n,k) = Sum_{i=0..n-k} C(k,i)*C(n-k,i)*2^(n-k-i).
T(n,k) = Sum_{i=0..n-k} C(k,i)*C(n-i,k)*(-1)^i*2^(n-k-i).
Recurrence: T(n+2,k+1) = 2*T(n+1,k+1)+T(n+1,k)-T(n,k). (End)
From Clark Kimberling, Feb 19 2012: (Start)
Define u(n,x) = u(n-1,x)+v(n-1,x), v(n,x) = u(n-1,x)+(x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1. Then v matches A106195 and u matches A207605. (End)
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k-1). - Philippe Deléham, Mar 22 2012
T(n+k,k) is the coefficient of x^n y^k in 1/(1-2x-y+xy). - Ira M. Gessel, Oct 30 2012
T(n, k) = A208341(n+1,n-k+1), k = 0..n. - Reinhard Zumkeller, Dec 16 2013
T(n, k) = hypergeometric_2F1(-n+k, k+1, 1 , -1). - Peter Luschny, May 20 2015
G.f. 1/(1-2*x+x^2*y-x*y). - R. J. Mathar, Aug 11 2015
Sum_{k=0..n} T(n, k) = Fibonacci(2*n+2) = A088305(n+1). - G. C. Greubel, Mar 15 2020

Extensions

Edited by N. J. A. Sloane, Apr 09 2007, merging two sequences submitted independently by Gary W. Adamson and Paul Barry

A055852 Convolution of A055589 with A011782.

Original entry on oeis.org

0, 1, 7, 34, 138, 501, 1683, 5336, 16172, 47264, 134048, 370688, 1003136, 2664192, 6960384, 17922048, 45552640, 114442240, 284508160, 700579840, 1710161920, 4141416448, 9955639296, 23770693632, 56400543744, 133041225728
Offset: 0

Views

Author

Wolfdieter Lang May 30 2000

Keywords

Comments

Seventh column of triangle A055587.
T(n,5) of array T as in A049600.

Crossrefs

Programs

  • GAP
    a:=[1,7,34,138,501,1683];; for n in [7..30] do a[n]:=12*a[n-1] -60*a[n-2] +160*a[n-3] -240*a[n-4] +192*a[n-5] -64*a[n-6]; od; Concatenation([0], a); # G. C. Greubel, Jan 16 2020
  • Magma
    R:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x*(1-x)^5/(1-2*x)^6 )); // G. C. Greubel, Jan 16 2020
    
  • Maple
    seq(coeff(series(x*(1-x)^5/(1-2*x)^6, x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 16 2020
  • Mathematica
    CoefficientList[Series[x*(1-x)^5/(1-2*x)^6, {x,0,30}], x] (* G. C. Greubel, Jan 16 2020 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x*(1-x)^5/(1-2*x)^6)) \\ G. C. Greubel, Jan 16 2020
    
  • Sage
    def A055852_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1-x)^5/(1-2*x)^6 ).list()
    A055852_list(30) # G. C. Greubel, Jan 16 2020
    

Formula

a(n) = T(n, 5) = A055587(n+5, 6).
G.f.: x*(1-x)^5/(1-2*x)^6.

A055589 Convolution of A049612 with A011782.

Original entry on oeis.org

0, 1, 6, 26, 96, 321, 1002, 2972, 8472, 23392, 62912, 165504, 427264, 1085184, 2717184, 6718464, 16427008, 39763968, 95387648, 226951168, 535953408, 1257046016, 2929852416, 6789267456, 15648423936, 35888562176, 81927340032
Offset: 0

Views

Author

Wolfdieter Lang May 30 2000

Keywords

Comments

Sixth column of triangle A055587. T(n,4) of array T as in A049600.

Crossrefs

Formula

a(n)= T(n, 4)= A055587(n+4, 5).
G.f.: x*((1-x)^4)/(1-2*x)^5.

A055853 Convolution of A055852 with A011782.

Original entry on oeis.org

0, 1, 8, 43, 190, 743, 2668, 8989, 28814, 88720, 264224, 765088, 2162624, 5986304, 16268800, 43499264, 114629120, 298147840, 766361600, 1948794880, 4907171840, 12245598208, 30305419264, 74425892864, 181481635840, 439603953664
Offset: 0

Views

Author

Wolfdieter Lang May 30 2000

Keywords

Comments

Eighth column of triangle A055587.
T(n,6) of array T as in A049600.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x*(1-x)^6/(1-2*x)^7 )); // G. C. Greubel, Jan 16 2020
    
  • Maple
    seq(coeff(series(x*(1-x)^6/(1-2*x)^7, x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 16 2020
  • Mathematica
    CoefficientList[Series[x*(1-x)^6/(1-2*x)^7, {x,0,30}], x] (* G. C. Greubel, Jan 16 2020 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x*(1-x)^6/(1-2*x)^7)) \\ G. C. Greubel, Jan 16 2020
    
  • Sage
    def A055853_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1-x)^6/(1-2*x)^7 ).list()
    A055853_list(30) # G. C. Greubel, Jan 16 2020

Formula

a(n) = T(n, 6)= A055587(n+6, 7).
G.f.: x*(1-x)^6/(1-2*x)^7.

A055854 Convolution of A055853 with A011782.

Original entry on oeis.org

0, 1, 9, 53, 253, 1059, 4043, 14407, 48639, 157184, 489872, 1480608, 4358752, 12541184, 35364864, 97960192, 267050240, 717619200, 1903452160, 4989337600, 12937052160, 33212530688, 84484882432, 213090238464, 533236219904
Offset: 0

Views

Author

Wolfdieter Lang May 30 2000

Keywords

Comments

Ninth column of triangle A055587.
T(n,7) of array T as in A049600.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x*(1-x)^7/(1-2*x)^8 )); // G. C. Greubel, Jan 16 2020
    
  • Maple
    seq(coeff(series(x*(1-x)^7/(1-2*x)^8, x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 16 2020
  • Mathematica
    CoefficientList[Series[x*(1-x)^7/(1-2*x)^8, {x,0,30}], x] (* G. C. Greubel, Jan 16 2020 *)
    LinearRecurrence[{16,-112,448,-1120,1792,-1792,1024,-256},{0,1,9,53,253,1059,4043,14407,48639,157184},40] (* Harvey P. Dale, Nov 04 2023 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x*(1-x)^7/(1-2*x)^8)) \\ G. C. Greubel, Jan 16 2020
    
  • Sage
    def A055854_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1-x)^7/(1-2*x)^8 ).list()
    A055854_list(30) # G. C. Greubel, Jan 16 2020

Formula

a(n)= T(n, 7)= A055587(n+7, 8).
G.f.: x*(1-x)^7/(1-2*x)^8.

A055855 Convolution of A055854 with A011782.

Original entry on oeis.org

0, 1, 10, 64, 328, 1462, 5908, 22180, 78592, 265729, 864146, 2719028, 8316200, 24814832, 72453344, 207502016, 584094080, 1618757120, 4423347200, 11932579840, 31812874240, 83901227008, 219074805760, 566754967552
Offset: 0

Views

Author

Wolfdieter Lang May 30 2000

Keywords

Comments

Tenth column of triangle A055587.
T(n,8) of array T as in A049600.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x*(1-x)^8/(1-2*x)^9 )); // G. C. Greubel, Jan 16 2020
    
  • Maple
    seq(coeff(series(x*(1-x)^8/(1-2*x)^9, x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 16 2020
  • Mathematica
    CoefficientList[Series[x*(1-x)^8/(1-2*x)^9, {x,0,30}], x] (* G. C. Greubel, Jan 16 2020 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x*(1-x)^8/(1-2*x)^9)) \\ G. C. Greubel, Jan 16 2020
    
  • Sage
    def A055855_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1-x)^8/(1-2*x)^9 ).list()
    A055855_list(30) # G. C. Greubel, Jan 16 2020

Formula

a(n) = T(n, 8) = A055587(n+8, 9).
G.f.: x*(1-x)^8/(1-2*x)^9.

A156906 Transform of Fibonacci(n+1) with Hankel transform (-1)^binomial(n+1,2) * Fibonacci(n+1).

Original entry on oeis.org

1, 0, 1, -1, 0, 0, 2, -2, -3, 3, 11, -11, -31, 31, 101, -101, -328, 328, 1102, -1102, -3760, 3760, 13036, -13036, -45750, 45750, 162262, -162262, -580638, 580638, 2093802, -2093802, -7601043, 7601043, 27756627, -27756627, -101888163
Offset: 0

Views

Author

Paul Barry, Feb 17 2009

Keywords

Comments

Hankel transform is (-1)^binomial(n+1,2) * Fibonacci(n+1).
Image of Fibonacci(n+1) by the Riordan array (1/(1 + x*c(-x^2)), x*c(-x^2)/(1 + x*c(-x^2))) = (1/(1-x), x*(1-x)/(1-2*x))^{-1} = A055587^{-1}.

Crossrefs

Programs

  • Maple
    cx := (1-sqrt(1-4*x))/2/x ;
    A156906 := proc(n)
            1+x^2*subs(x=-x^2,cx)/(1+x) ;
            coeftayl(%,x=0,n) ;
    end proc:
    seq(A156906(n), n=0..40);  # R. J. Mathar, Jul 28 2016
  • Mathematica
    a[n_]:= (1/2)*(2*Boole[n==0] -(-1)^n + Sum[(-1)^(n+j+1)*Binomial[2*j, j]/(2*j-1), {j, 0, Floor[n/2]}]); Table[a[n], {n, 0, 60}] (* G. C. Greubel, Jun 14 2021 *)
  • Sage
    def A156906(n): return (1/2)*( 2*bool(n==0) - (-1)^n + sum( (-1)^(n+j+1)*binomial( 2*j, j)/(2*j-1) for j in (0..n//2)) )
    [A156906(n) for n in (0..40)] # G. C. Greubel, Jun 14 2021

Formula

G.f.: (1 + 2*x + sqrt(1+4*x^2))/(2*(1+x)) = 1 + x^2*c(-x^2)/(1+x) where c(x) is the g.f. of A000108;
G.f.: 1/(1 - x^2/(1 + x + 2*x^2/(1 - x/2 + 3*x^2/4/(1 + x/6 + 10*x^2/9/(1 - x/15 + 24/25*x^2/(1 + ...)))))) (continued fraction);
In the continued fraction expansion of the g.f. the general term is 1 - x*if(n=0, 0, (-1)^n/(Fibonacci(n)*Fibonacci(n+1))) + x^2*(-0^n + Fibonacci(n)*Fibonacci(n+2) )/Fibonacci(n+1)^2.
a(n) = Sum_{k=0..n} (-1)^(n-k)*b(k), where b(n) = binomial(1,n) -A000108((n-2)/2) * (-1)^(n/2) * (1+(-1)^n)/2 and b(0) = 1.
n*a(n) = -n*a(n-1) -4*(n-3)*a(n-2) -4*(n-3)*a(n-3). - R. J. Mathar, Nov 14 2011
a(n) = (1/2)*( 2*[n=0] - (-1)^n + Sum_{j=0..floor(n/2)} (-1)^(n+j+1)*binomial(2*j, j)/(2*j-1) ). - G. C. Greubel, Jun 14 2021
Showing 1-9 of 9 results.