A049600
Array T read by diagonals; T(i,j) is the number of paths from (0,0) to (i,j) consisting of nonvertical segments (x(k),y(k))-to-(x(k+1),y(k+1)) such that 0 = x(1) < x(2) < ... < x(n-1) < x(n)=i, 0 = y(1) <= y(2) <= ... <= y(n-1) <= y(n)=j, for i >= 0, j >= 0.
Original entry on oeis.org
0, 0, 1, 0, 1, 2, 0, 1, 3, 4, 0, 1, 4, 8, 8, 0, 1, 5, 13, 20, 16, 0, 1, 6, 19, 38, 48, 32, 0, 1, 7, 26, 63, 104, 112, 64, 0, 1, 8, 34, 96, 192, 272, 256, 128, 0, 1, 9, 43, 138, 321, 552, 688, 576, 256, 0, 1, 10, 53, 190, 501, 1002, 1520, 1696, 1280, 512
Offset: 0
Diagonals (each starting on row 1): {0}; {0,1}; {0,1,2}; ...
Array begins:
0 0 0 0 0 0 0 0 0 0 0 ...
1 1 1 1 1 1 1 1 1 1 1 ...
2 3 4 5 6 7 8 9 10 11 12 ...
4 8 13 19 26 34 43 53 64 76 89 ...
8 20 38 63 96 138 190 253 328 416 518 ...
16 48 104 192 321 501 743 1059 1462 1966 2586 ...
32 112 272 552 1002 1683 2668 4043 5908 8378 11584 ...
64 256 688 1520 2972 5336 8989 14407 22180 33028 47818 ...
Triangle begins:
0;
0, 1;
0, 1, 2;
0, 1, 3, 4;
0, 1, 4, 8, 8;
0, 1, 5, 13, 20, 16;
0, 1, 6, 19, 38, 48, 32;
0, 1, 7, 26, 63, 104, 112, 64;
...
(1, 0, -1/2, 1/2, 0, 0, 0, ...) DELTA (0, 2, 0, 0, 0, ...) where DELTA is the operator defined in A084938 begins:
1;
1, 0;
1, 2, 0;
1, 3, 4, 0;
1, 4, 8, 8, 0;
1, 5, 13, 20, 16, 0;
1, 6, 19, 38, 48, 32, 0;
1, 7, 26, 63, 104, 112, 64, 0;
- Reinhard Zumkeller, Rows n = 0..125 of table, flattened
- David Callan, Some bijections for lattice paths, arXiv:2112.05241 [math.CO], 2021.
- David Callan, A bijection for Delannoy paths, arXiv:2202.04649 [math.CO], 2022.
- R. Cori and G. Hetyei, Counting genus one partitions and permutations, arXiv preprint arXiv:1306.4628 [math.CO], 2013.
- R. Cori and G. Hetyei, How to count genus one partitions, FPSAC 2014, Chicago, Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France, 2014, 333-344.
- Robert Cori and Gabor Hetyei, Genus one partitions, in 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AT, pp. 333-344, .
- Sergio Falcon, On the complex k-Fibonacci numbers, Cogent Mathematics, (2016), 3: 1201944. See Table 1.
- G. Hetyei, Central Delannoy numbers, Legendre polynomials and a balanced join operation preserving the Cohen-Macauley property, Annals of Combinatorics, 10 (2006), 443-462.
- G. Hetyei, Central Delannoy numbers and balanced Cohen-Macaulay complexes, Ann. Comb. 10 (2006), 443-462.
- G. Hetyei, Links we almost missed between Delannoy numbers and Legendre polynomials
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- M. Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
- M. Janjic and B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
- Clark Kimberling, Enumeration of paths, compositions of integers and Fibonacci numbers, Fib. Quarterly 39 (5) (2001) 430-435, Figure 1.
- Clark Kimberling, Path-counting and Fibonacci numbers, Fib. Quart. 40 (4) (2002) 328-338, Example 3C.
- Benjamin Lyons and McCabe Olsen, Self-Reachable Chip Configurations on Trees, arXiv:2409.00763 [math.CO], 2024. See p. 18.
- Thomas Selig, Combinatorial aspects of sandpile models on wheel and fan graphs, arXiv:2202.06487 [math.CO], 2022.
- Luis Verde-Star, A Matrix Approach to Generalized Delannoy and Schröder Arrays, J. Int. Seq., Vol. 24 (2021), Article 21.4.1.
Diagonal sums are even-indexed Fibonacci numbers. Alternating (+-) diagonal sums are signed Fibonacci numbers.
-
a049600 n k = a049600_tabl !! n !! k
a049600_row n = a049600_tabl !! n
a049600_tabl = [0] : map (0 :) a208341_tabl
-- Reinhard Zumkeller, Apr 15 2014
-
A049600 := proc(n,k)
add(binomial(k+j,j)*binomial(n-1,j),j=0..n-1) ;
end proc: # R. J. Mathar, Oct 26 2015
-
t[n_, k_] := Hypergeometric2F1[ n-k+1, 1-k, 1, -1] // Floor; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 09 2013 *)
t[n_, k_] := Sum[LaguerreL[n-k, i, 0]* LaguerreL[k-i, i, 0], {i,0,k}] //Floor; Table[t[n,k], {n, 0, 16}, {k, -1, n}] (* Richard Turk, Sep 08 2017 *)
T[n_, k_] := If[k == 0, 0, JacobiP[k - 1, 0, 1 - 2*k + n, 3]];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Nov 25 2021 *)
-
{A(i, j) = polcoeff( (x / (1 - 2*x)) * ((1 - x) / (1 - 2*x))^j + x * O(x^i), i)}; /* Michael Somos, Oct 01 2003 */
-
T(n,k)=sum(j=0,n-1,binomial(k+j,j)*binomial(n-1,j)) \\ Paul D. Hanna, Oct 06 2006
A055588
a(n) = 3*a(n-1) - a(n-2) - 1 with a(0) = 1 and a(1) = 2.
Original entry on oeis.org
1, 2, 4, 9, 22, 56, 145, 378, 988, 2585, 6766, 17712, 46369, 121394, 317812, 832041, 2178310, 5702888, 14930353, 39088170, 102334156, 267914297, 701408734, 1836311904, 4807526977, 12586269026, 32951280100, 86267571273
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- E. Barcucci, R. Pinzani and R. Sprugnoli, Directed column-convex polyominoes by recurrence relations, Lecture Notes in Computer Science, No. 668, Springer, Berlin (1993), pp. 282-298.
- Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, Flattened Catalan Words, arXiv:2405.05357 [math.CO], 2024. See p. 20.
- Sergi Elizalde, Symmetric peaks and symmetric valleys in Dyck paths, arXiv:2008.05669 [math.CO], 2020.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- M. M. Mogbonju, I. A. Ogunleke, and O. A. Ojo, Graphical Representation Of Conjugacy Classes In The Order-Preserving Full Transformation Semigroup, International Journal of Scientific Research and Engineering Studies (IJSRES), Volume 1(5) (2014), ISSN: 2349-8862.
- László Németh, Hyperbolic Pascal pyramid, arXiv:1511.02067 [math.CO], 2015 (1st line of Table 1 is 3*a(n-2)).
- László Németh, Pascal pyramid in the space H^2 x R, arXiv:1701.06022 [math.CO], 2017 (1st line of Table 1 is a(n-2)).
- Yan X Zhang, Four Variations on Graded Posets, arXiv:1508.00318 [math.CO], 2015.
- Index entries for linear recurrences with constant coefficients, signature (4,-4,1).
Apart from the first term, same as
A052925.
-
List([0..40], n-> Fibonacci(2*n)+1 ); # G. C. Greubel, Jun 06 2019
-
[Fibonacci(2*n)+1: n in [0..40]]; // Vincenzo Librandi, Sep 30 2017
-
g:=z/(1-3*z+z^2): gser:=series(g, z=0, 43): seq(abs(coeff(gser, z, n)+1), n=0..27); # Zerinvary Lajos, Mar 22 2009
-
Table[Fibonacci[2n] +1, {n, 0, 40}] (* or *) LinearRecurrence[{4, -4, 1}, {1, 2, 4}, 40] (* Vincenzo Librandi, Sep 30 2017 *)
-
vector(40, n, n--; fibonacci(2*n)+1) \\ G. C. Greubel, Jun 06 2019
-
[lucas_number1(n,3,1)+1 for n in range(40)] # Zerinvary Lajos, Jul 06 2008
A106195
Riordan array (1/(1-2*x), x*(1-x)/(1-2*x)).
Original entry on oeis.org
1, 2, 1, 4, 3, 1, 8, 8, 4, 1, 16, 20, 13, 5, 1, 32, 48, 38, 19, 6, 1, 64, 112, 104, 63, 26, 7, 1, 128, 256, 272, 192, 96, 34, 8, 1, 256, 576, 688, 552, 321, 138, 43, 9, 1, 512, 1280, 1696, 1520, 1002, 501, 190, 53, 10, 1, 1024, 2816, 4096, 4048, 2972, 1683, 743, 253, 64, 11
Offset: 0
Triangle begins
1;
2, 1;
4, 3, 1;
8, 8, 4, 1;
16, 20, 13, 5, 1;
32, 48, 38, 19, 6, 1;
64, 112, 104, 63, 26, 7, 1;
(0, 2, 0, 0, 0, ...) DELTA (1, 0, -1/2, 1/2, 0, 0, ...) begins :
1;
0, 1;
0, 2, 1;
0, 4, 3, 1;
0, 8, 8, 4, 1;
0, 16, 20, 13, 5, 1;
0, 32, 48, 38, 19, 6, 1;
0, 64, 112, 104, 63, 26, 7, 1. - _Philippe Deléham_, Mar 22 2012
Column 0 = 1, 2, 4...; (binomial transform of 1, 1, 1...); column 1 = 1, 3, 8, 20...(binomial transform of 1, 2, 3...); column 2: 1, 4, 13, 38...= binomial transform of bin(n, 2): 1, 3, 6...
-
a106195 n k = a106195_tabl !! n !! k
a106195_row n = a106195_tabl !! n
a106195_tabl = [1] : [2, 1] : f [1] [2, 1] where
f us vs = ws : f vs ws where
ws = zipWith (-) (zipWith (+) ([0] ++ vs) (map (* 2) vs ++ [0]))
([0] ++ us ++ [0])
-- Reinhard Zumkeller, Dec 16 2013
-
[ (&+[Binomial(n-k, n-j)*Binomial(j, k): j in [0..n]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 15 2020
-
T := (n, k) -> hypergeom([-n+k, k+1],[1],-1):
seq(lprint(seq(simplify(T(n, k)), k=0..n)), n=0..7); # Peter Luschny, May 20 2015
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x]
v[n_, x_] := u[n - 1, x] + (x + 1) v[n - 1, x]
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207605 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A106195 *)
(* Clark Kimberling, Feb 19 2012 *)
Table[Hypergeometric2F1[-n+k, k+1, 1, -1], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 15 2020 *)
-
create_list(sum(binomial(i,k)*binomial(n-k,n-i),i,0,n),n,0,8,k,0,n); /* Emanuele Munarini, Mar 22 2011 */
-
from sympy import Poly, symbols
x = symbols('x')
def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x)
def v(n, x): return 1 if n==1 else u(n - 1, x) + (x + 1)*v(n - 1, x)
def a(n): return Poly(v(n, x), x).all_coeffs()[::-1]
for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017
-
from mpmath import hyp2f1, nprint
def T(n, k): return hyp2f1(k - n, k + 1, 1, -1)
for n in range(13): nprint([int(T(n, k)) for k in range(n + 1)]) # Indranil Ghosh, May 28 2017, after formula from Peter Luschny
-
[[sum(binomial(n-k,n-j)*binomial(j,k) for j in (0..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 15 2020
Original entry on oeis.org
0, 1, 7, 34, 138, 501, 1683, 5336, 16172, 47264, 134048, 370688, 1003136, 2664192, 6960384, 17922048, 45552640, 114442240, 284508160, 700579840, 1710161920, 4141416448, 9955639296, 23770693632, 56400543744, 133041225728
Offset: 0
-
a:=[1,7,34,138,501,1683];; for n in [7..30] do a[n]:=12*a[n-1] -60*a[n-2] +160*a[n-3] -240*a[n-4] +192*a[n-5] -64*a[n-6]; od; Concatenation([0], a); # G. C. Greubel, Jan 16 2020
-
R:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x*(1-x)^5/(1-2*x)^6 )); // G. C. Greubel, Jan 16 2020
-
seq(coeff(series(x*(1-x)^5/(1-2*x)^6, x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 16 2020
-
CoefficientList[Series[x*(1-x)^5/(1-2*x)^6, {x,0,30}], x] (* G. C. Greubel, Jan 16 2020 *)
-
my(x='x+O('x^30)); concat([0], Vec(x*(1-x)^5/(1-2*x)^6)) \\ G. C. Greubel, Jan 16 2020
-
def A055852_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x*(1-x)^5/(1-2*x)^6 ).list()
A055852_list(30) # G. C. Greubel, Jan 16 2020
Original entry on oeis.org
0, 1, 6, 26, 96, 321, 1002, 2972, 8472, 23392, 62912, 165504, 427264, 1085184, 2717184, 6718464, 16427008, 39763968, 95387648, 226951168, 535953408, 1257046016, 2929852416, 6789267456, 15648423936, 35888562176, 81927340032
Offset: 0
Original entry on oeis.org
0, 1, 8, 43, 190, 743, 2668, 8989, 28814, 88720, 264224, 765088, 2162624, 5986304, 16268800, 43499264, 114629120, 298147840, 766361600, 1948794880, 4907171840, 12245598208, 30305419264, 74425892864, 181481635840, 439603953664
Offset: 0
-
R:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x*(1-x)^6/(1-2*x)^7 )); // G. C. Greubel, Jan 16 2020
-
seq(coeff(series(x*(1-x)^6/(1-2*x)^7, x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 16 2020
-
CoefficientList[Series[x*(1-x)^6/(1-2*x)^7, {x,0,30}], x] (* G. C. Greubel, Jan 16 2020 *)
-
my(x='x+O('x^30)); concat([0], Vec(x*(1-x)^6/(1-2*x)^7)) \\ G. C. Greubel, Jan 16 2020
-
def A055853_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x*(1-x)^6/(1-2*x)^7 ).list()
A055853_list(30) # G. C. Greubel, Jan 16 2020
Original entry on oeis.org
0, 1, 9, 53, 253, 1059, 4043, 14407, 48639, 157184, 489872, 1480608, 4358752, 12541184, 35364864, 97960192, 267050240, 717619200, 1903452160, 4989337600, 12937052160, 33212530688, 84484882432, 213090238464, 533236219904
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (16,-112,448,-1120,1792,-1792,1024,-256).
-
R:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x*(1-x)^7/(1-2*x)^8 )); // G. C. Greubel, Jan 16 2020
-
seq(coeff(series(x*(1-x)^7/(1-2*x)^8, x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 16 2020
-
CoefficientList[Series[x*(1-x)^7/(1-2*x)^8, {x,0,30}], x] (* G. C. Greubel, Jan 16 2020 *)
LinearRecurrence[{16,-112,448,-1120,1792,-1792,1024,-256},{0,1,9,53,253,1059,4043,14407,48639,157184},40] (* Harvey P. Dale, Nov 04 2023 *)
-
my(x='x+O('x^30)); concat([0], Vec(x*(1-x)^7/(1-2*x)^8)) \\ G. C. Greubel, Jan 16 2020
-
def A055854_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x*(1-x)^7/(1-2*x)^8 ).list()
A055854_list(30) # G. C. Greubel, Jan 16 2020
Original entry on oeis.org
0, 1, 10, 64, 328, 1462, 5908, 22180, 78592, 265729, 864146, 2719028, 8316200, 24814832, 72453344, 207502016, 584094080, 1618757120, 4423347200, 11932579840, 31812874240, 83901227008, 219074805760, 566754967552
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (18,-144,672,-2016,4032,-5376,4608,-2304,512).
-
R:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x*(1-x)^8/(1-2*x)^9 )); // G. C. Greubel, Jan 16 2020
-
seq(coeff(series(x*(1-x)^8/(1-2*x)^9, x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 16 2020
-
CoefficientList[Series[x*(1-x)^8/(1-2*x)^9, {x,0,30}], x] (* G. C. Greubel, Jan 16 2020 *)
-
my(x='x+O('x^30)); concat([0], Vec(x*(1-x)^8/(1-2*x)^9)) \\ G. C. Greubel, Jan 16 2020
-
def A055855_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x*(1-x)^8/(1-2*x)^9 ).list()
A055855_list(30) # G. C. Greubel, Jan 16 2020
A156906
Transform of Fibonacci(n+1) with Hankel transform (-1)^binomial(n+1,2) * Fibonacci(n+1).
Original entry on oeis.org
1, 0, 1, -1, 0, 0, 2, -2, -3, 3, 11, -11, -31, 31, 101, -101, -328, 328, 1102, -1102, -3760, 3760, 13036, -13036, -45750, 45750, 162262, -162262, -580638, 580638, 2093802, -2093802, -7601043, 7601043, 27756627, -27756627, -101888163
Offset: 0
-
cx := (1-sqrt(1-4*x))/2/x ;
A156906 := proc(n)
1+x^2*subs(x=-x^2,cx)/(1+x) ;
coeftayl(%,x=0,n) ;
end proc:
seq(A156906(n), n=0..40); # R. J. Mathar, Jul 28 2016
-
a[n_]:= (1/2)*(2*Boole[n==0] -(-1)^n + Sum[(-1)^(n+j+1)*Binomial[2*j, j]/(2*j-1), {j, 0, Floor[n/2]}]); Table[a[n], {n, 0, 60}] (* G. C. Greubel, Jun 14 2021 *)
-
def A156906(n): return (1/2)*( 2*bool(n==0) - (-1)^n + sum( (-1)^(n+j+1)*binomial( 2*j, j)/(2*j-1) for j in (0..n//2)) )
[A156906(n) for n in (0..40)] # G. C. Greubel, Jun 14 2021
Showing 1-9 of 9 results.
Comments