A055854 Convolution of A055853 with A011782.
0, 1, 9, 53, 253, 1059, 4043, 14407, 48639, 157184, 489872, 1480608, 4358752, 12541184, 35364864, 97960192, 267050240, 717619200, 1903452160, 4989337600, 12937052160, 33212530688, 84484882432, 213090238464, 533236219904
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (16,-112,448,-1120,1792,-1792,1024,-256).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x*(1-x)^7/(1-2*x)^8 )); // G. C. Greubel, Jan 16 2020 -
Maple
seq(coeff(series(x*(1-x)^7/(1-2*x)^8, x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 16 2020
-
Mathematica
CoefficientList[Series[x*(1-x)^7/(1-2*x)^8, {x,0,30}], x] (* G. C. Greubel, Jan 16 2020 *) LinearRecurrence[{16,-112,448,-1120,1792,-1792,1024,-256},{0,1,9,53,253,1059,4043,14407,48639,157184},40] (* Harvey P. Dale, Nov 04 2023 *)
-
PARI
my(x='x+O('x^30)); concat([0], Vec(x*(1-x)^7/(1-2*x)^8)) \\ G. C. Greubel, Jan 16 2020
-
Sage
def A055854_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x*(1-x)^7/(1-2*x)^8 ).list() A055854_list(30) # G. C. Greubel, Jan 16 2020
Formula
a(n)= T(n, 7)= A055587(n+7, 8).
G.f.: x*(1-x)^7/(1-2*x)^8.
Comments