cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A075183 One half of third column of triangle A075181.

Original entry on oeis.org

1, 11, 105, 1020, 10500, 115920, 1375920, 17539200, 239500800, 3492720000, 54226972800, 893577484800, 15583119552000, 286816578048000, 5557616064000000, 113108602134528000, 2412627824775168000
Offset: 0

Views

Author

Wolfdieter Lang, Sep 19 2002

Keywords

Comments

Also one half of third diagonal of triangle A048594.

Crossrefs

Formula

a(n) = A075181(n+3, 2)/2 = A048594(n+3, n+1)/2, n>=0.
a(n) = (n+1)!*S1(n+3, n+1)/2 with S1(n, m) := A008275(n, m) (Stirling1).

A075182 Greatest common divisors of rows of triangle A075181 and of (unsigned) triangle A048594.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 24, 24, 24, 24, 48, 48, 48, 48, 384, 1152, 1152, 1152, 2304, 2304, 11520, 11520, 46080, 46080, 414720, 414720, 829440, 829440, 829440, 829440, 13271040, 13271040, 13271040, 39813120, 79626240, 79626240, 79626240, 79626240, 318504960, 318504960
Offset: 1

Views

Author

Wolfdieter Lang, Sep 19 2002

Keywords

Examples

			Row n=3 of triangle A075181 is [6,6,2], hence a(3)=2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := GCD @@ Table[k! * Abs[StirlingS1[n, k]], {k, 1, n}]; Array[a, 40] (* Amiram Eldar, Aug 08 2024 *)

Formula

a(n) = gcd(A075181(n, m), m=1..n) = gcd(|A048594(n, m)|, m=1..n), n>=1.

Extensions

More terms from Amiram Eldar, Aug 08 2024

A075184 One half of fourth column of triangle A075181.

Original entry on oeis.org

3, 50, 675, 8820, 117600, 1632960, 23814000, 365904000, 5927644800, 101189088000, 1818030614400, 34326452160000, 679990671360000, 14108934647808000, 306113492805120000, 6933770723303424000
Offset: 0

Views

Author

Wolfdieter Lang, Sep 19 2002

Keywords

Comments

Also one half of fourth diagonal of unsigned triangle A048594.

Crossrefs

Formula

a(n) = A075181(n+4, 3)/2 = |A048594(n+4, n+1)|/2, n>=0.
a(n) = -(n+1)!*S1(n+4, n+1)/2 with S1(n, m) := A008275(n, m) (Stirling1).

A075185 One-fourth of fifth column of triangle A075181.

Original entry on oeis.org

6, 137, 2436, 40614, 673470, 11389140, 198793980, 3602823840, 67991283360, 1337641905600, 27440275262400, 586731694348800, 13067437397414400, 302870068070169600, 7298072456298624000
Offset: 0

Views

Author

Wolfdieter Lang, Sep 19 2002

Keywords

Comments

Also one-fourth of fifth diagonal of triangle A048594.

Crossrefs

Formula

a(n) = A075181(n+5, 4)/4 = A048594(n+5, n+1)/4, n>=0.
a(n) = (n+1)!*S1(n+5, n+1)/4 with S1(n, m) := A008275(n, m) (Stirling1).

A075186 Sixth column of triangle A075181 divided by 4!.

Original entry on oeis.org

5, 147, 3283, 67284, 1346625, 27061650, 553887180, 11636745120, 252045153360, 5641615980000, 130658463936000, 3132519418828800, 77747158404115200, 1997070421868121600, 53066619106300800000
Offset: 0

Views

Author

Wolfdieter Lang, Sep 19 2002

Keywords

Comments

Also sixth diagonal of unsigned A048594 triangle divided by 4!.

Crossrefs

Formula

a(n) = A075181(n+6, 5)/4! = |A048594(n+6, n+1)|/4!, n>=0.
a(n) = -(n+1)!*S1(n+6, n+1)/4! with S1(n, m) := A008275(n, m) (Stirling1).

A075187 Seventh column of triangle A075181 divided by 4!.

Original entry on oeis.org

30, 1089, 29531, 723680, 17084650, 400186050, 9447948510, 226861274640, 5570383618800, 140328075888000, 3634144257744000, 96862561213017600, 2658662147043302400, 75165608074100544000, 2188816503237524160000
Offset: 0

Views

Author

Wolfdieter Lang, Sep 19 2002

Keywords

Comments

Also seventh diagonal of triangle A048594 divided by 4!.

Crossrefs

Formula

a(n) = A075181(n+7, 6)/4! = |A048594(n+7, n+1)|/4!, n>=0.
a(n) = (n+1)!*S1(n+7, n+1)/4! with S1(n, m) := A008275(n, m) (Stirling1).

A001286 Lah numbers: a(n) = (n-1)*n!/2.

Original entry on oeis.org

1, 6, 36, 240, 1800, 15120, 141120, 1451520, 16329600, 199584000, 2634508800, 37362124800, 566658892800, 9153720576000, 156920924160000, 2845499424768000, 54420176498688000, 1094805903679488000, 23112569077678080000, 510909421717094400000
Offset: 2

Views

Author

Keywords

Comments

Number of surjections from {1,...,n} to {1,...,n-1}. - Benoit Cloitre, Dec 05 2003
First Eulerian transform of 0,1,2,3,4,... . - Ross La Haye, Mar 05 2005
With offset 0 : determinant of the n X n matrix m(i,j)=(i+j+1)!/i!/j!. - Benoit Cloitre, Apr 11 2005
These numbers arise when expressing n(n+1)(n+2)...(n+k)[n+(n+1)+(n+2)+...+(n+k)] as sums of squares: n(n+1)[n+(n+1)] = 6(1+4+9+16+ ... + n^2), n(n+1)(n+2)(n+(n+1)+(n+2)) = 36(1+(1+4)+(1+4+9)+...+(1+4+9+16+ ... + n^2)), n(n+1)(n+2)(n+3)(n+(n+1)+(n+2)+(n+3)) = 240(...), ... . - Alexander R. Povolotsky, Oct 16 2006
a(n) is the number of edges in the Hasse diagram for the weak Bruhat order on the symmetric group S_n. For permutations p,q in S_n, q covers p in the weak Bruhat order if p,q differ by an adjacent transposition and q has one more inversion than p. Thus 23514 covers 23154 due to the transposition that interchanges the third and fourth entries. Cf. A002538 for the strong Bruhat order. - David Callan, Nov 29 2007
a(n) is also the number of excedances in all permutations of {1,2,...,n} (an excedance of a permutation p is a value j such p(j)>j). Proof: j is exceeded (n-1)! times by each of the numbers j+1, j+2, ..., n; now, Sum_{j=1..n} (n-j)(n-1)! = n!(n-1)/2. Example: a(3)=6 because the number of excedances of the permutations 123, 132, 312, 213, 231, 321 are 0, 1, 1, 1, 2, 1, respectively. - Emeric Deutsch, Dec 15 2008
(-1)^(n+1)*a(n) is the determinant of the n X n matrix whose (i,j)-th element is 0 for i = j, is j-1 for j>i, and j for j < i. - Michel Lagneau, May 04 2010
Row sums of the triangle in A030298. - Reinhard Zumkeller, Mar 29 2012
a(n) is the total number of ascents (descents) over all n-permutations. a(n) = Sum_{k=1..n} A008292(n,k)*k. - Geoffrey Critzer, Jan 06 2013
For m>=4, a(m-2) is the number of Hamiltonian cycles in a simple graph with m vertices which is complete, except for one edge. Proof: think of distinct round-table seatings of m persons such that persons "1" and "2" may not be neighbors; the count is (m-3)(m-2)!/2. See also A001710. - Stanislav Sykora, Jun 17 2014
Popularity of left (right) children in treeshelves. Treeshelves are ordered binary (0-1-2) increasing trees where every child is connected to its parent by a left or a right link. Popularity is the sum of a certain statistic (number of left children, in this case) over all objects of size n. See A278677, A278678 or A278679 for more definitions and examples. See A008292 for the distribution of the left (right) children in treeshelves. - Sergey Kirgizov, Dec 24 2016

Examples

			G.f. = x^2 + 6*x^3 + 36*x^4 + 240*x^5 + 1800*x^6 + 15120*x^7 + 141120*x^8 + ...
a(10) = (1+2+3+4+5+6+7+8+9)*(1*2*3*4*5*6*7*8*9) = 16329600. - _Reinhard Zumkeller_, May 15 2010
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 90, ex. 4.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
  • John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A002868 is an essentially identical sequence.
Column 2 of |A008297|.
Third column (m=2) of triangle |A111596(n, m)|: matrix product of |S1|.S2 Stirling number matrices.
Cf. also A000110, A000111.

Programs

Formula

a(n) = Sum_{i=0..n-1} (-1)^(n-i-1) * i^n * binomial(n-1,i). - Yong Kong (ykong(AT)curagen.com), Dec 26 2000 [corrected by Amiram Eldar, May 02 2022]
E.g.f.: x^2/[2(1-x)^2]. - Ralf Stephan, Apr 02 2004
a(n+1) = (-1)^(n+1)*det(M_n) where M_n is the n X n matrix M_(i,j)=max(i*(i+1)/2,j*(j+1)/2). - Benoit Cloitre, Apr 03 2004
Row sums of table A051683. - Alford Arnold, Sep 29 2006
5th binomial transform of A135218: (1, 1, 1, 25, 25, 745, 3145, ...). - Gary W. Adamson, Nov 23 2007
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j)*Stirling1(n,k)*Stirling2(j,i)*x^(k-j) then a(n)=(-1)^n*f(n,2,-2), (n>=2). - Milan Janjic, Mar 01 2009
a(n) = A000217(n-1)*A000142(n-1). - Reinhard Zumkeller, May 15 2010
a(n) = (n+1)!*Sum_{k=1..n-1} 1/(k^2+3*k+2). - Gary Detlefs, Sep 14 2011
Sum_{n>=2} 1/a(n) = 2*(2 - exp(1) - gamma + Ei(1)) = 1.19924064599..., where gamma = A001620 and Ei(1) = A091725. - Ilya Gutkovskiy, Nov 24 2016
a(n+1) = a(n)*n*(n+1)/(n-1). - Chai Wah Wu, Apr 11 2018
Sum_{n>=2} (-1)^n/a(n) = 2*(gamma - Ei(-1)) - 2/e, where e = A001113 and Ei(-1) = -A099285. - Amiram Eldar, May 02 2022

A048594 Triangle T(n,k) = k! * Stirling1(n,k), 1<=k<=n.

Original entry on oeis.org

1, -1, 2, 2, -6, 6, -6, 22, -36, 24, 24, -100, 210, -240, 120, -120, 548, -1350, 2040, -1800, 720, 720, -3528, 9744, -17640, 21000, -15120, 5040, -5040, 26136, -78792, 162456, -235200, 231840, -141120, 40320, 40320, -219168, 708744, -1614816, 2693880, -3265920, 2751840, -1451520, 362880
Offset: 1

Views

Author

Oleg Marichev (oleg(AT)wolfram.com)

Keywords

Comments

Row sums (unsigned) give A007840(n), n>=1; (signed): A006252(n), n>=1.
Apart from signs, coefficients in expansion of n-th derivative of 1/log(x).

Examples

			Triangle begins
   1;
  -1,    2;
   2,   -6,   6;
  -6,   22, -36,   24;
  24, -100, 210, -240, 120; ...
The 2nd derivative of 1/log(x) is -2/x^3*log(x)^2 - 6/x^3*log(x)^3 - 6/x^3*log(x)^4.
		

Crossrefs

Cf. A133942 (left edge), A000142 (right edge), A006252 (row sums), A238685 (central terms).
Row sums: A007840 (unsigned), A006252 (signed).

Programs

  • Haskell
    a048594 n k = a048594_tabl !! (n-1) !! (k-1)
    a048594_row n = a048594_tabl !! (n-1)
    a048594_tabl = map snd $ iterate f (1, [1]) where
       f (i, xs) = (i + 1, zipWith (-) (zipWith (*) [1..] ([0] ++ xs))
                                       (map (* i) (xs ++ [0])))
    -- Reinhard Zumkeller, Mar 02 2014
    
  • Magma
    /* As triangle: */ [[Factorial(k)*StirlingFirst(n,k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Dec 15 2015
    
  • Maple
    with(combinat): A048594 := (n,k)->k!*stirling1(n,k);
  • Mathematica
    Flatten[Table[k!*StirlingS1[n,k], {n,10}, {k,n}]] (* Harvey P. Dale, Aug 28 2011 *)
    Join @@ CoefficientRules[ -Table[ D[ 1/Log[z], {z, n}], {n, 9}] /. Log[z] -> -Log[z], {1/z, 1/Log[z]}, "NegativeLexicographic"][[All, All, 2]] (* Oleg Marichev (oleg(AT)wolfram.com) and Maxim Rytin (m.r(AT)inbox.ru); submitted by Robert G. Wilson v, Aug 29 2011 *)
  • PARI
    {T(n, k)= if(k<1 || k>n, 0, stirling(n, k)* k!)} /* Michael Somos Apr 11 2007 */
    
  • SageMath
    def A048594(n,k): return (-1)^(n-k)*factorial(k)*stirling_number1(n,k)
    flatten([[A048594(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 24 2023

Formula

T(n, k) = k*T(n-1, k-1) - (n-1)*T(n-1, k) if n>=k>=1, T(n, 0) = 0 and T(1, 1)=1, else 0.
E.g.f. k-th column: log(1+x)^k, k>=1.
From Peter Bala, Nov 25 2011: (Start):
E.g.f.: 1/(1-t*log(1+x)) = 1 + t*x + (-t+2*t^2)*x^2/2! + ....
The row polynomials are given by D^n(1/(1-x*t)) evaluated at x = 0, where D is the operator exp(-x)*d/dx.
(End)

A129841 Antidiagonal sums of triangle T defined in A048594: T(j,k) = k! * Stirling1(j,k), 1<= k <= j.

Original entry on oeis.org

1, -1, 4, -12, 52, -256, 1502, -10158, 78360, -680280, 6574872, -70075416, 816909816, -10342968456, 141357740736, -2074340369088, 32530886655168, -542971977209760, 9610316495698416, -179788450082431536, 3544714566466060032
Offset: 1

Views

Author

Paul Curtz, May 22 2007

Keywords

Examples

			First seven rows of T are
[    1 ]
[   -1,      2 ]
[    2,     -6,      6 ]
[   -6,     22,    -36,     24 ]
[   24,   -100,    210,   -240,    120 ]
[ -120,    548,  -1350,   2040,  -1800,    720 ]
[  720,  -3528,   9744, -17640,  21000, -15120,   5040 ]
		

References

  • P. Curtz, Integration numerique des systemes differentiels a conditions initiales. Note no. 12 du Centre de Calcul Scientifique de l'Armement, 1969, 135 pages, p. 61. Available from Centre d'Electronique de L'Armement, 35170 Bruz, France, or INRIA, Projets Algorithmes, 78150 Rocquencourt.
  • P. Curtz, Gazette des Mathematiciens, 1992, no. 52, p. 44.
  • P. Flajolet, X. Gourdon and B. Salvy, Gazette des Mathematiciens, 1993, no. 55, pp. 67-78.

Crossrefs

Cf. A048594 (T read by rows), A075181 (T unsigned with rows read backwards), A006252 (row sums of T), A000142 (main diagonal of T), A001286 (unsigned first subdiagonal of T). Unsigned values of second through sixth column of T are in A052517, A052748, A052753, A052767, A052779 resp.

Programs

  • Magma
    m:=21; T:=[ [ Factorial(k)*StirlingFirst(j, k): k in [1..j] ]: j in [1..m] ]; [ &+[ T[j-k+1][k]: k in [1..(j+1) div 2] ]: j in [1..m] ]; // Klaus Brockhaus, Jun 03 2007
  • Mathematica
    m = 21; t[j_, k_] := k!*StirlingS1[j, k]; Total /@ Table[ t[j-k+1, k], {j, 1, m}, {k, 1, Quotient[j+1, 2]}] (* Jean-François Alcover, Aug 13 2012, translated from Klaus Brockhaus's Magma program *)

Formula

E.g.f. for k-th column (k>=1): log(1+x)^k. For further formulas see the references.

Extensions

Edited and extended by Klaus Brockhaus, Jun 03 2007
Showing 1-9 of 9 results.