A145235 a(n) = numerator of Atkin polynomials A_n(j) evaluated at j = 1728.
1008, 421344, 901254816, 77507914176, 33392993024160, 14400272882673216, 80771130598914068544, 13408007679419735378304, 19679603271468316601505696, 8496755026505881957246582080, 215817577673249401714063184832, 93197366130882174446119601563776, 1006205363432069396407530278283307584
Offset: 1
Examples
1008, 421344, 901254816/5, 77507914176, 33392993024160, 14400272882673216, 80771130598914068544/13, ...
Links
- M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998
Programs
-
Maple
af:=proc(a,n) mul(a+i,i=0..n-1); end; A1728:=n->-12^(3*n+1)*af(-1/12,n)*af(7/12,n)/(2*n-1)!;
Formula
See Maple code for formula.