A145236 a(n) is the least positive integer such that if p_n is the n-th prime then (ceiling(sqrt(a(n)*p_n)))^2 - a(n)*p_n is a perfect square.
2, 1, 1, 3, 5, 5, 9, 9, 13, 17, 19, 23, 25, 27, 31, 35, 41, 41, 47, 51, 51, 57, 61, 65, 73, 75, 77, 81, 83, 85, 99, 101, 107, 109, 117, 119, 125, 129, 133, 139, 145, 145, 155, 157, 161, 163, 173, 183, 187, 189, 193, 199, 201, 209, 215, 221, 225, 227, 233, 237, 239, 247
Offset: 1
Keywords
Programs
-
Maple
A145236 := proc(n) local p,k,a ; p := ithprime(n) ; for k from 1 do ceil(sqrt(ceil(k*p))) ; a := %^2-k*p ; if issqr(a) then return k ; end if; end do: end proc: for n from 1 do printf("%d,\n",A145236(n)) ; end do: # R. J. Mathar, Aug 02 2010
Extensions
a(12)=23 (not 21). - Vladimir Shevelev, Oct 16 2008
Extended by R. J. Mathar, Aug 02 2010
Comments