A145338 a(n) is the smallest prime p where |d(p-1) - d(p+1)| = n. (d(m) = the number of divisors of m.)
7, 2, 11, 197, 23, 37, 47, 401, 59, 1601, 181, 16901, 167, 3137, 179, 577, 419, 1297, 1051, 12101, 359, 739601, 1009, 4357, 1511, 50177, 719, 171610001, 839, 67601, 10657, 9096257, 1439, 240101, 3697, 145540097, 3023, 15877, 2879, 3587237, 2521
Offset: 0
Keywords
Examples
a(2)=11 because abs(d(10) - d(12)) = 2 while abs(d(p-1) - d(p+1)) < 2 for p=2,3,5 and 7. - _Emeric Deutsch_, Oct 11 2008
Crossrefs
Cf. A145337.
Programs
-
Maple
with(numtheory); a:=proc(n) local j: for j while abs(tau(ithprime(j)-1)-tau(ithprime(j)+1)) <> n do end do: ithprime(j) end proc: seq(a(n), n=0..26); # Emeric Deutsch, Oct 11 2008
Extensions
More terms from R. J. Mathar and Emeric Deutsch, Oct 10 2008
Extended from a(27) onwards by Ray Chandler, Oct 12 2008
Comments