cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145351 Prime-indexed composites k such that lpf(k) + gpf(k) is a prime.

Original entry on oeis.org

6, 10, 20, 22, 30, 44, 54, 58, 66, 82, 96, 108, 120, 136, 142, 144, 204, 232, 324, 330, 340, 352, 384, 464, 492, 544, 596, 616, 704, 738, 750, 792, 870, 894, 918, 960, 990, 1062, 1234, 1312, 1318, 1326, 1498, 1534, 1540, 1566, 1576, 1632, 1694, 1700, 1722
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 04 2009

Keywords

Examples

			6 is a term because it is the 2nd composite number, 6=2*3, and 2+3=5 is prime;
10 is a term because it is the 5th composite number, 10=2*5, and 2+5=7 is prime;
22 is a term because it is the 13th composite number, 22=2*11, and 2+11=13 is prime;
44 is a term because it is the 29th composite number, 44=2*2*11, and 2+11=13 is prime.
		

Crossrefs

Cf. A000040, A002808, A020639 (lpf), A006530 (gpf).

Programs

  • Maple
    A020639 := proc(n) numtheory[factorset](n) ; min(op(%)) ; end proc:
    A006530 := proc(n) numtheory[factorset](n) ; max(op(%)) ; end proc:
    A002808 := proc(n) if n = 1 then 4; else for a from procname(n-1)+1 do if not isprime(a) then return a; end if; end do: end if; end proc:
    A065858 := proc(n) A002808(ithprime(n)) ; end proc:
    A145351 := proc(n) c := A065858(n) ; if isprime(A020639(c) + A006530(c)) then printf("%d,",c) ; end if; end proc:
    seq(A145351(n),n=1..400) ; # R. J. Mathar, May 01 2010
  • Mathematica
    pfiQ[n_]:=Module[{f=FactorInteger[n]},PrimeQ[f[[1,1]]+f[[-1,1]]]]; Module[ {nn=2000,c},c=Select[ Range[nn],CompositeQ];Select[ Table[ Take[c,{n}][[1]],{n,Prime[Range[PrimePi[Length[c]]]]}],pfiQ]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 18 2019 *)

Extensions

Corrected (inserted 20 from n=5, 30 from n=8, removed 200) and extended beyond 204 by R. J. Mathar, May 01 2010
Edited by Jon E. Schoenfield, Feb 07 2019