cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145399 Dirichlet g.f.: (1+4/2^s+1/4^s)*zeta(s)^3.

Original entry on oeis.org

1, 7, 3, 19, 3, 21, 3, 37, 6, 21, 3, 57, 3, 21, 9, 61, 3, 42, 3, 57, 9, 21, 3, 111, 6, 21, 10, 57, 3, 63, 3, 91, 9, 21, 9, 114, 3, 21, 9, 111, 3, 63, 3, 57, 18, 21, 3, 183, 6, 42, 9, 57, 3, 70, 9, 111, 9, 21, 3, 171, 3, 21, 18, 127, 9, 63, 3, 57, 9, 63, 3, 222, 3, 21, 18, 57, 9, 63, 3, 183
Offset: 1

Views

Author

N. J. A. Sloane, Mar 13 2009

Keywords

Crossrefs

Programs

  • Maple
    read("transforms") : nmax := 100 :
    L := [1,4,0,1,seq(0,i=1..nmax)] :
    MOBIUSi(%) :
    MOBIUSi(%) :
    MOBIUSi(%) ; # R. J. Mathar, Sep 25 2017
  • Mathematica
    f[p_, e_] := (e + 1)*(e + 2)/2; f[2, e_] := 3*e*(e + 1) + 1;; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 25 2022 *)
  • PARI
    t1=direuler(p=2,200,1/(1-X)^3)
    t2=direuler(p=2,2,1+4*X+X^2,200)
    t3=dirmul(t1,t2)
    A145399(n) = t3[n]; \\ This line added by Antti Karttunen, Sep 27 2018
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 2, 3*f[i,2]*(f[i,2]+1)+1, (f[i,2]+1)*(f[i,2]+2)/2)); } \\ Amiram Eldar, Oct 25 2022

Formula

From Amiram Eldar, Oct 25 2022: (Start):
Multiplicative with a(2^e) = 3*e*(e+1)+1 and a(p^e) = (e+1)*(e+2)/2 if p > 2.
Sum_{k=1..n} a(k) ~ (13/8)*n*log(n)^2 + c_1*n*log(n) + c_2*n, where c_1 = 39*gamma/4 - 5*log(2)/2 - 13/4 and c_2 = 13/4 + 39*gamma*(gamma-1)/4 - 15*gamma*log(2)/2 - 39*gamma_1/4 + 5*log(2)/2 + 3*log(2)^2/2, where gamma is Euler's constant (A001620) and gamma_1 is the 1st Stieltjes constant (A082633). (End)