cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145419 Decimal expansion of Sum_{k>=2} 1/(k*(log k)^3).

Original entry on oeis.org

2, 0, 6, 5, 8, 8, 6, 5, 3, 8, 8, 8, 4, 1, 3, 5, 2, 5, 0, 9, 0, 3, 1, 4, 2, 2, 4, 1, 6, 4, 3, 7, 7, 3, 8, 1, 8, 0, 8, 6, 9, 7, 5, 2, 0, 6, 9, 3, 8, 3, 4, 7, 0, 7, 3, 4, 6, 3, 2, 4, 3, 6, 0, 2, 4, 1, 6, 8, 0, 7, 4, 0, 1, 3, 7, 7, 6, 5, 1, 5, 8, 6, 5, 5, 2, 6, 7, 3, 8, 2, 7, 3, 1, 4, 3, 0, 1, 3, 8, 8, 7, 7, 1, 8, 8
Offset: 1

Views

Author

R. J. Mathar, Feb 08 2009

Keywords

Comments

Cubic analog of A115563. Evaluated by direct summation of the first 160 terms and accumulating the remainder with the 5 nontrivial terms in the Euler-Maclaurin expansion.
Theorem: Bertrand series Sum_{n>=2} 1/(n*log(n)^q) is convergent iff q > 1 (for q = 2, 4, 5 see respectively A115563, A145420, A145421). - Bernard Schott, Oct 23 2021

Examples

			2.0658865388841352509031422416437738180869752069383...
		

Crossrefs

Programs

  • Mathematica
    digits = 50; NSum[ 1/(n*Log[n]^3), {n, 2, Infinity}, NSumTerms -> 10000, WorkingPrecision -> digits + 10] // RealDigits[#, 10, digits] & // First (* Jean-François Alcover, Feb 11 2013 *)
    alfa = 3; maxiter = 20; nn = 10000; bas = Sum[1/(k*Log[k]^alfa), {k, 2, nn}] + 1/((alfa - 1)*Log[nn + 1/2]^(alfa - 1)); sub = 0; Do[sub = sub + 1/4^s/(2*s + 1)! * NSum[(D[1/(x*Log[x]^alfa), {x, 2 s}]) /. x -> k, {k, nn + 1, Infinity}, WorkingPrecision -> 120, NSumTerms -> 100000, PrecisionGoal -> 120, Method -> {"NIntegrate", "MaxRecursion" -> 100}]; Print[bas - sub], {s, 1, maxiter}] (* Vaclav Kotesovec, Jun 11 2022 *)

Extensions

More terms from Jean-François Alcover, Feb 11 2013
More digits from Vaclav Kotesovec, Jun 11 2022