cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A115563 Decimal expansion of Sum_{n>=2} 1/(n*log(n)^2).

Original entry on oeis.org

2, 1, 0, 9, 7, 4, 2, 8, 0, 1, 2, 3, 6, 8, 9, 1, 9, 7, 4, 4, 7, 9, 2, 5, 7, 1, 9, 7, 6, 1, 6, 5, 5, 1, 3, 2, 6, 3, 8, 5, 5, 3, 1, 9, 8, 4, 3, 9, 4, 7, 4, 2, 0, 2, 2, 6, 4, 9, 9, 1, 5, 6, 0, 3, 1, 9, 2, 8, 1, 4, 6, 9, 4, 9, 3, 9, 1, 3, 6, 8, 7, 4, 1, 7, 7, 1, 6, 9, 2, 9, 1, 3, 7, 7, 1, 8, 6, 2, 3, 2, 1, 3, 5, 8, 3, 8, 7, 6, 6, 5, 3, 4, 7, 2, 6, 0, 9, 7, 3, 8, 9, 0, 3, 5, 7, 7, 9, 5, 0, 8, 6, 5, 9, 4, 8, 9, 4, 2, 4, 6, 5
Offset: 1

Views

Author

Pierre CAMI, Mar 11 2006

Keywords

Comments

Sum_{n>1} 1/(n*log(n)^2) is a tiny bit greater than (zeta(2))^(3/2) = (Pi^2 / 6)^(3/2) = 2.109709908063657.... - Daniel Forgues, Mar 30 2012
From Bernard Schott, Oct 03 2021: (Start)
Theorem: Bertrand series Sum_{n>=2} 1/(n*log(n)^q) is convergent iff q > 1 (for q = 3, 4, 5 see respectively A145419, A145420, A145421).
As H(n) ~ log(n), compare with A347145. (End)

Examples

			2.10974280123689197447925719761655132638553198439474202264991560319281...
		

Crossrefs

Cf. A137245, A257812. A097906 is a similar sum.

Programs

  • Mathematica
    digits = 150; NSum[1/(n*Log[n]^2), {n, 2, Infinity}, NSumTerms -> 200000, WorkingPrecision -> digits + 5, Method -> {"EulerMaclaurin", Method -> {"NIntegrate", "MaxRecursion" -> 20}}] (* Vaclav Kotesovec, Mar 01 2016, after Jean-François Alcover *)
    maxiter = 20; nn = 10000; alfa = 2; bas = Sum[1/(k*Log[k]^alfa), {k, 2, nn}] + 1/((alfa - 1)*Log[nn + 1/2]^(alfa - 1)); sub = 0; Do[sub = sub + 1/4^s/(2*s + 1)! * NSum[(D[1/(x*Log[x]^alfa), {x, 2 s}]) /. x -> k, {k, nn + 1, Infinity}, WorkingPrecision -> 120, NSumTerms -> 100000, PrecisionGoal -> 120, Method -> {"NIntegrate", "MaxRecursion" -> 100}]; Print[bas - sub], {s, 1, maxiter}] (* Vaclav Kotesovec, Jun 12 2022 *)

Extensions

Removed incorrect speculations about relations to A097906 - R. J. Mathar, Oct 14 2010
More terms from Robert G. Wilson v, Dec 12 2012
Corrected a(55) and beyond, Vaclav Kotesovec, Mar 01 2016

A354917 Decimal expansion of Sum_{p = primes} 1 / (p * log(p)^3).

Original entry on oeis.org

1, 8, 4, 6, 1, 4, 7, 4, 1, 9, 3, 6, 6, 4, 4, 9, 5, 2, 7, 7, 2, 8, 6, 9, 3, 6, 5, 1, 4, 2, 3, 7, 9, 3, 9, 2, 8, 4, 9, 1, 8, 4, 2, 8, 2, 3, 4, 2, 1, 3, 0, 3, 7, 0, 5, 6, 6, 3, 6, 3, 3, 3, 0, 1, 1, 9, 2, 8, 5, 8, 0, 7, 5, 3, 6, 6, 6, 1, 6, 8, 9, 9, 0, 9, 0, 3, 5, 0, 1, 5, 2, 5, 5, 0, 7, 1, 9, 7, 3, 6, 9, 9, 9, 6, 1
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 12 2022

Keywords

Examples

			1.8461474193664495...
		

Crossrefs

Programs

  • Mathematica
    digits = 105; precision = digits + 15;
    tmax = 500; (* integrand considered negligible beyond tmax *)
    kmax = 500; (* f(k) considered negligible beyond kmax *)
    InLogZeta[k_] := NIntegrate[(t - k)^2 Log[Zeta[t]], {t, k, tmax}, WorkingPrecision -> precision, MaxRecursion -> 20, AccuracyGoal -> precision];
    f[k_] := With[{mu = MoebiusMu[k]}, If[mu == 0, 0, (mu/(2 k^4))*InLogZeta[k]]];
    s = 0;
    Do[s = s + f[k]; Print[k, " ", s], {k, 1, kmax}];
    RealDigits[s][[1]][[1 ;; digits]] (* Jean-François Alcover, Jun 21 2022, after Vaclav Kotesovec *)
  • PARI
    default(realprecision, 200); s=0; for(k=1, 500, s = s + moebius(k)/(2*k^4) * intnum(x=k,[[1], 1], (x-k)^2 * log(zeta(x))); print(s));

Extensions

Last digit corrected by Jean-François Alcover and confirmed by Vaclav Kotesovec, Jun 22 2022

A145420 Decimal expansion of Sum_{k>=2} 1/(k*(log k)^4).

Original entry on oeis.org

2, 5, 5, 9, 1, 1, 9, 7, 4, 2, 9, 8, 6, 7, 3, 1, 4, 1, 8, 5, 7, 2, 0, 2, 0, 9, 7, 0, 3, 1, 0, 7, 6, 2, 9, 3, 3, 6, 1, 9, 1, 7, 8, 1, 5, 6, 3, 6, 6, 8, 7, 9, 4, 8, 7, 1, 7, 0, 6, 7, 9, 7, 0, 7, 9, 1, 4, 6, 5, 9, 0, 9, 8, 1, 6, 6, 1, 7, 1, 7, 6, 6, 5, 9, 3, 7, 9, 5, 9, 9, 2, 4, 9, 0, 3, 2, 1, 3, 8, 3, 5, 5, 4, 5, 8
Offset: 1

Views

Author

R. J. Mathar, Feb 08 2009

Keywords

Comments

Quartic analog of A115563. Evaluated by direct summation of the first 160 terms and accumulating the remainder with the 5 nontrivial terms in the Euler-Maclaurin expansion.
Bertrand series Sum_{n>=2} 1/(n*log(n)^q) is convergent iff q > 1. - Bernard Schott, Jan 22 2022

Examples

			2.5591197429867314185720209703107629336191781563668...
		

Crossrefs

Cf. A115563 (q=2), A145419 (q=3), A145421 (q=5).

Programs

  • Mathematica
    (* Computation needs a few minutes *) digits = 105; NSum[ 1/(n*Log[n]^4), {n, 2, Infinity}, NSumTerms -> 800000, WorkingPrecision -> digits + 5, Method -> {"EulerMaclaurin", Method -> {"NIntegrate", "MaxRecursion" -> 10}}] // RealDigits[#, 10, digits] & // First (* Jean-François Alcover, Feb 12 2013 *)

Extensions

More terms from Jean-François Alcover, Feb 12 2013

A145421 Decimal expansion of Sum_{k>=2} 1/(k*(log k)^5).

Original entry on oeis.org

3, 4, 2, 9, 8, 1, 6, 2, 6, 0, 0, 2, 3, 0, 5, 6, 0, 6, 5, 0, 2, 2, 4, 1, 1, 5, 8, 5, 6, 5, 5, 8, 6, 0, 5, 4, 0, 4, 5, 2, 3, 7, 6, 2, 0, 0, 1, 2, 0, 7, 1, 0, 3, 8, 9, 8, 4, 8, 2, 0, 0, 5, 2, 0, 9, 7, 4, 0, 4, 4, 4, 2, 8, 3, 5, 9, 4, 8, 1, 6, 1, 2, 1, 1, 8, 7, 4, 1, 9, 7, 2, 3, 8, 7, 3, 5, 3, 4, 5, 1, 6, 7, 7, 4, 2
Offset: 1

Views

Author

R. J. Mathar, Feb 08 2009

Keywords

Comments

Quintic analog of A115563. Evaluated by direct summation of the first 160 terms and accumulating the remainder with the 5 nontrivial terms in the Euler-Maclaurin expansion.
Bertrand series Sum_{n>=2} 1/(n*log(n)^q) is convergent iff q > 1. - Bernard Schott, Feb 08 2022

Examples

			3.4298162600230560650224115856558605404523762001207...
		

Crossrefs

Cf. A115563 (q=2), A145419 (q=3), A145420 (q=4).

Programs

  • Mathematica
    (* Computation needs a few minutes *) digits = 105; NSum[ 1/(n*Log[n]^5), {n, 2, Infinity}, NSumTerms -> 1500000, WorkingPrecision -> digits + 10, Method -> {"EulerMaclaurin", Method -> {"NIntegrate", "MaxRecursion" -> 10}}] // RealDigits[#, 10, digits] & // First (* Jean-François Alcover, Feb 12 2013 *)

Extensions

More terms from Jean-François Alcover, Feb 12 2013

A363632 Decimal expansion of Sum_{k>=2} 1/(k* log(k)^(3/2)).

Original entry on oeis.org

2, 9, 3, 7, 6, 6, 3, 6, 3, 7, 9, 0, 1, 2, 3, 1, 7, 7
Offset: 1

Views

Author

R. J. Mathar, Jun 12 2023

Keywords

Examples

			2.93766363790123177...
		

Crossrefs

Cf. A115563 (expo 2), A363633 (expo 5/2), A145419 (expo 3), A145420 (expo 4).

A363633 Decimal expansion of Sum_{k>=2} 1/(k* log(k)^(5/2)).

Original entry on oeis.org

1, 9, 8, 3, 4, 6, 3, 5, 4, 7, 1, 5, 6, 2, 3, 9, 3, 9, 1, 1, 8
Offset: 1

Views

Author

R. J. Mathar, Jun 12 2023

Keywords

Examples

			1.98346354715623939118...
		

Crossrefs

Cf. A363632 (expo 3/2), A115563 (expo 2), A145419 (expo 3), A145420 (expo 4).
Showing 1-6 of 6 results.