A145438 Decimal expansion of sum_{n=1..inf} 1/(n^3*binomial(2n,n)).
5, 2, 2, 9, 4, 6, 1, 9, 2, 1, 3, 3, 3, 3, 5, 1, 0, 8, 4, 9, 1, 1, 8, 5, 1, 8, 3, 5, 2, 7, 3, 0, 3, 5, 4, 0, 1, 6, 3, 0, 4, 4, 5, 9, 1, 7, 4, 3, 9, 7, 7, 8, 4, 1, 4, 6, 5, 9, 4, 1, 0, 1, 4, 1, 4, 4, 2, 0, 7, 3, 5, 7, 7, 6, 4, 4, 1, 3, 2, 9, 9, 3, 1, 5, 0, 4, 2, 6, 2, 1, 9, 1, 3
Offset: 0
Examples
0.522946...
Links
- J. M. Borwein, R. Girgensohn, Evaluation of Binomial Series, CECM-02-188 (2002).
- A. I. Davydychev, M. Yu. Kalmykov, Massive Feynman diagrams and inverse binomial sums, Nucl. Phys. B 699 (2004), 3-64.
- M. Yu. Kalmykov and O. Veretin, Single-scale diagrams and multiple binomial sums, Phys. Lett. B 483 (2000) 315-323.
- R. J. Mathar, Corrigenda to "Interesting Series involving..", arXiv:0905.0215 [math.CA]
Programs
-
Mathematica
RealDigits[ N[1/18*(Sqrt[3]* Pi*(-PolyGamma[1, 2/3] + PolyGamma[1, 4/3] + 9) - 24*Zeta[3]), 105]][[1]] (* Jean-François Alcover, Nov 08 2012, after R. J. Mathar *)
Formula
Comment from Alois P. Heinz, Feb 08 2009: Maple's answer to this is: a:= sum(1/(n^3*binomial(2*n,n)), n=1..infinity); a:= 1/2 hypergeom([1, 1, 1, 1], [2, 2, 3/2], 1/4); evalf (a, 140); .522946192133335108491185183527303540163044591743977841465941014...
Comments