cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145468 Convolution square of A003106.

Original entry on oeis.org

1, 0, 2, 2, 3, 4, 7, 8, 13, 16, 23, 28, 40, 48, 66, 82, 107, 132, 171, 208, 266, 324, 406, 494, 614, 740, 912, 1098, 1338, 1604, 1945, 2318, 2793, 3320, 3972, 4706, 5605, 6612, 7840, 9222, 10882, 12760, 15004, 17534, 20542, 23944, 27949, 32490, 37813, 43832
Offset: 0

Views

Author

Michael Somos, Oct 11 2008

Keywords

Examples

			q^11 + 2*q^71 + 2*q^101 + 3*q^131 + 4*q^161 + 7*q^191 + 8*q^221 + ...
		

Crossrefs

-A145466(5*n+2) = a(n).

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/((1 - x^(5*k - 2))*(1 - x^(5*k - 3)))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 14 2018 *)
  • PARI
    {a(n) = local(t); if( n<0, 0, t = 1 + x * O(x^n); polcoeff( sum(k= 1,(sqrt(4*n + 1) - 1) / 2, t *= x^(2*k) / (1 - x^k) * (1 + x * O(x^(n - k^2 - k))), 1)^2, n))}

Formula

Expansion of H(x)^2 in powers of x where H() is a Rogers-Ramanujan function.
Euler transform of period 5 sequence [ 0, 2, 2, 0, 0, ...].
G.f.: (1 + Sum_{k>0} x^(k^2 - k) / ((1 - t) * (1 - t^2) * ... * (1 - t^k)))^2 = (Product_{k>0} (1 - x^(5*k - 2)) * (1 - x^(5*k -3)))^-2.
a(n) ~ (sqrt(5)-1) * exp(2*Pi*sqrt(2*n/15)) / (2^(7/4) * 3^(1/4) * 5^(3/4) * n^(3/4)) * (1 + (11*Pi/(15*sqrt(30)) - 3*sqrt(15/2)/(16*Pi)) / sqrt(n)). - Vaclav Kotesovec, Aug 14 2018