A145468 Convolution square of A003106.
1, 0, 2, 2, 3, 4, 7, 8, 13, 16, 23, 28, 40, 48, 66, 82, 107, 132, 171, 208, 266, 324, 406, 494, 614, 740, 912, 1098, 1338, 1604, 1945, 2318, 2793, 3320, 3972, 4706, 5605, 6612, 7840, 9222, 10882, 12760, 15004, 17534, 20542, 23944, 27949, 32490, 37813, 43832
Offset: 0
Keywords
Examples
q^11 + 2*q^71 + 2*q^101 + 3*q^131 + 4*q^161 + 7*q^191 + 8*q^221 + ...
Crossrefs
-A145466(5*n+2) = a(n).
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[1/((1 - x^(5*k - 2))*(1 - x^(5*k - 3)))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 14 2018 *)
-
PARI
{a(n) = local(t); if( n<0, 0, t = 1 + x * O(x^n); polcoeff( sum(k= 1,(sqrt(4*n + 1) - 1) / 2, t *= x^(2*k) / (1 - x^k) * (1 + x * O(x^(n - k^2 - k))), 1)^2, n))}
Formula
Expansion of H(x)^2 in powers of x where H() is a Rogers-Ramanujan function.
Euler transform of period 5 sequence [ 0, 2, 2, 0, 0, ...].
G.f.: (1 + Sum_{k>0} x^(k^2 - k) / ((1 - t) * (1 - t^2) * ... * (1 - t^k)))^2 = (Product_{k>0} (1 - x^(5*k - 2)) * (1 - x^(5*k -3)))^-2.
a(n) ~ (sqrt(5)-1) * exp(2*Pi*sqrt(2*n/15)) / (2^(7/4) * 3^(1/4) * 5^(3/4) * n^(3/4)) * (1 + (11*Pi/(15*sqrt(30)) - 3*sqrt(15/2)/(16*Pi)) / sqrt(n)). - Vaclav Kotesovec, Aug 14 2018