A145518 Triangle read by rows: T1[n,k;x] := Sum_{partitions with k parts p(n, k; m_1, m_2, m_3, ..., m_n)} x_1^m_1 * x_2^m_2 * ... x^n*m_n, for x_i = A000040(i).
2, 3, 4, 5, 6, 8, 7, 19, 12, 16, 11, 29, 38, 24, 32, 13, 68, 85, 76, 48, 64, 17, 94, 181, 170, 152, 96, 128, 19, 177, 326, 443, 340, 304, 192, 256, 23, 231, 683, 787, 886, 680, 608, 384, 512, 29, 400, 1066, 1780, 1817, 1772, 1360, 1216, 768, 1024, 31, 484, 1899, 3119
Offset: 1
Examples
Triangle starts: 2; 3, 4; 5, 6, 8; 7, 19, 12, 16; 11, 29, 38, 24, 32; 13, 68, 85, 76, 48, 64; ...
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Tilman Neumann, More terms, partition generator and transform implementation.
Programs
-
Maple
g:= proc(n, i) option remember; `if`(n=0 or i=1, (2*x)^n, expand(add(g(n-i*j, i-1)*(ithprime(i)*x)^j, j=0..n/i))) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(g(n$2)): seq(T(n), n=1..12); # Alois P. Heinz, May 25 2015
-
Mathematica
g[n_, i_] := g[n, i] = If[n==0 || i==1, (2 x)^n, Expand[Sum[g[n-i*j, i-1]*(Prime[i]*x)^j, {j, 0, n/i}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, n}]][g[n, n]]; Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)
Extensions
Reference to more terms etc. changed to make it version independent by Tilman Neumann, Sep 02 2009
Comments