cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145520 Triangle read by rows: T2[n,k] = Sum_{partitions of n with k parts p(n, k; m_1, m_2, m_3, ..., m_n)} c(n; m_1, m_2, ..., m_n) * x_1^m_1 * x_2^m_2 * ... x^n*m_n, where x_i = i-th prime.

Original entry on oeis.org

2, 3, 4, 5, 18, 8, 7, 67, 72, 16, 11, 220, 470, 240, 32, 13, 697, 2625, 2420, 720, 64, 17, 2100, 13559, 20230, 10360, 2016, 128, 19, 6159, 66374, 152313, 120400, 39200, 5376, 256, 23, 17340, 313136, 1071168, 1235346, 602784, 135744, 13824, 512, 29, 47581
Offset: 1

Views

Author

Tilman Neumann, Oct 12 2008, Oct 13 2008, Sep 02 2009

Keywords

Comments

Here c(n; m_1, m_2, ..., m_n) = n! / (m_1!*1!^m_1 * m_2!*2!^m_2 * ... * m_n!*n!^m_n) is the number of ways to realize the partition p(n, k; m_1, m_2, m_3, ..., m_n).
Also the Bell transform of the prime numbers. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 29 2016

Examples

			Triangle begins:
:  2;
:  3,    4;
:  5,   18,     8;
:  7,   67,    72,    16;
: 11,  220,   470,   240,    32;
: 13,  697,  2625,  2420,   720,   64;
: 17, 2100, 13559, 20230, 10360, 2016, 128;
		

Crossrefs

Cf. A000040, A007446 (row sums), A145518.

Programs

  • Maple
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(x
          *binomial(n-1, j-1)*ithprime(j)*b(n-j), j=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n)):
    seq(T(n), n=1..10);  # Alois P. Heinz, May 27 2015
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> ithprime(n+1), 9); # Peter Luschny, Jan 29 2016
  • Mathematica
    b[n_] := b[n] = Expand[If[n == 0, 1, Sum[x*Binomial[n - 1, j - 1]*Prime[j]* b[n - j], {j, 1, n}]]]; T[n_] := Function [p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n]]; Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 23 2016, after Alois P. Heinz *)
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    B = BellMatrix[Function[n, Prime[n+1]], rows];
    Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)