A145536 a(n) is the number of numbers removed in each step of Eratosthenes's sieve for 9!.
181439, 60479, 24191, 13823, 7540, 5800, 4092, 3446, 2701, 2046, 1842, 1487, 1296, 1200, 1070, 927, 817, 782, 703, 665, 645, 600, 574, 538, 498, 477, 465, 451, 441, 425, 385, 372, 351, 346, 326, 322, 308, 294, 288, 277, 267, 263, 248, 246, 238, 236, 221, 211
Offset: 1
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..110 (full sequence)
Programs
-
Maple
A145536:=Array([seq(0,j=1..110)]): lim:=9!: p:=Array([seq(ithprime(j),j=1..110)]): for n from 4 to lim do if(isprime(n))then n:=n+1: fi: for k from 1 to 110 do if(n mod p[k] = 0)then A145536[k]:=A145536[k]+1: break: fi: od: od: seq(A145536[j],j=1..110); # Nathaniel Johnston, Jun 23 2011
-
Mathematica
f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 9; kk = PrimePi[Sqrt[nn! ]]; t3 = f3[nn!, kk] (* Bob Hanlon (hanlonr(AT)cox.net) *)
Comments