cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145551 Numbers k such that product of divisors of k / sum of divisors of k is an integer.

Original entry on oeis.org

1, 6, 28, 30, 66, 84, 102, 120, 210, 270, 318, 330, 364, 420, 462, 496, 510, 546, 570, 642, 672, 690, 714, 840, 868, 870, 924, 930, 966, 1080, 1092, 1122, 1320, 1410, 1428, 1488, 1518, 1590, 1638, 1722, 1770, 1782, 1890, 1932, 2040, 2130, 2226, 2280, 2310
Offset: 1

Views

Author

Ctibor O. Zizka, Oct 13 2008

Keywords

Comments

Numbers k such that A007955(k)/A000203(k) is an integer
Numbers k such that k^sigma_0(k) is a multiple of sigma_1(k)^2. - Chai Wah Wu, Mar 09 2016

Crossrefs

Programs

  • Maple
    A007955 := proc(n) local dvs,d ; dvs := numtheory[divisors](n) ; mul(d,d=dvs) ; end: A000203 := proc(n) local dvs,d ; dvs := numtheory[divisors](n) ; add(d,d=dvs) ; end: isA145551 := proc(n) RETURN(A007955(n) mod A000203(n) = 0) ; end: for n from 1 to 10000 do if isA145551(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Oct 14 2008
  • Mathematica
    spQ[n_]:=Module[{ds=Divisors[n]},IntegerQ[(Times@@ds)/Total[ds]]]; Select[ Range[2500],spQ] (* Harvey P. Dale, Jun 26 2012 *)
    Select[Range[2500], Divisible[#^(DivisorSigma[0, #]/2), DivisorSigma[1, #]] &] (* Amiram Eldar, Nov 08 2020 *)
  • Python
    from sympy import divisor_sigma
    A145551_list = [n for n in range(1,10**3) if not n**divisor_sigma(n,0) % divisor_sigma(n,1)**2] # Chai Wah Wu, Mar 09 2016

Extensions

90, 96, 108, 126, 132, 140 removed, extended by R. J. Mathar, Oct 14 2008